MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramz2 Structured version   Unicode version

Theorem ramz2 14397
Description: The Ramsey number when  F has value zero for some color  C. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ramz2  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  =  0 )

Proof of Theorem ramz2
Dummy variables  b 
f  c  s  x  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 simpl1 999 . . . 4  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  M  e.  NN )
32nnnn0d 10848 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  M  e.  NN0 )
4 simpl2 1000 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  R  e.  V )
5 simpl3 1001 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  F : R
--> NN0 )
6 0nn0 10806 . . . 4  |-  0  e.  NN0
76a1i 11 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  0  e.  NN0 )
8 simplrl 759 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  C  e.  R )
9 0elpw 4616 . . . . 5  |-  (/)  e.  ~P s
109a1i 11 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  (/)  e.  ~P s )
11 simplrr 760 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( F `  C )  =  0 )
12 0le0 10621 . . . . 5  |-  0  <_  0
1311, 12syl6eqbr 4484 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( F `  C )  <_  0
)
14 simpll1 1035 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  M  e.  NN )
1510hashbc 14380 . . . . . 6  |-  ( M  e.  NN  ->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
1614, 15syl 16 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
17 0ss 3814 . . . . 5  |-  (/)  C_  ( `' f " { C } )
1816, 17syl6eqss 3554 . . . 4  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) )
19 fveq2 5864 . . . . . . 7  |-  ( c  =  C  ->  ( F `  c )  =  ( F `  C ) )
2019breq1d 4457 . . . . . 6  |-  ( c  =  C  ->  (
( F `  c
)  <_  ( # `  x
)  <->  ( F `  C )  <_  ( # `
 x ) ) )
21 sneq 4037 . . . . . . . 8  |-  ( c  =  C  ->  { c }  =  { C } )
2221imaeq2d 5335 . . . . . . 7  |-  ( c  =  C  ->  ( `' f " {
c } )  =  ( `' f " { C } ) )
2322sseq2d 3532 . . . . . 6  |-  ( c  =  C  ->  (
( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } )  <->  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) )
2420, 23anbi12d 710 . . . . 5  |-  ( c  =  C  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) )  <-> 
( ( F `  C )  <_  ( # `
 x )  /\  ( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) ) )
25 fveq2 5864 . . . . . . . 8  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
26 hash0 12401 . . . . . . . 8  |-  ( # `  (/) )  =  0
2725, 26syl6eq 2524 . . . . . . 7  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
2827breq2d 4459 . . . . . 6  |-  ( x  =  (/)  ->  ( ( F `  C )  <_  ( # `  x
)  <->  ( F `  C )  <_  0
) )
29 oveq1 6289 . . . . . . 7  |-  ( x  =  (/)  ->  ( x ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  ( (/) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) )
3029sseq1d 3531 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' f " { C } )  <->  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) )
3128, 30anbi12d 710 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( F `  C
)  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) )  <->  ( ( F `  C )  <_  0  /\  ( (/) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " { C } ) ) ) )
3224, 31rspc2ev 3225 . . . 4  |-  ( ( C  e.  R  /\  (/) 
e.  ~P s  /\  (
( F `  C
)  <_  0  /\  ( (/) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' f " { C } ) ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
338, 10, 13, 18, 32syl112anc 1232 . . 3  |-  ( ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
--> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) )  /\  ( 0  <_ 
( # `  s )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
341, 3, 4, 5, 7, 33ramub 14386 . 2  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  <_  0 )
35 ramubcl 14391 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( 0  e.  NN0  /\  ( M Ramsey  F )  <_  0 ) )  ->  ( M Ramsey  F
)  e.  NN0 )
363, 4, 5, 7, 34, 35syl32anc 1236 . . 3  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  e.  NN0 )
37 nn0le0eq0 10820 . . 3  |-  ( ( M Ramsey  F )  e. 
NN0  ->  ( ( M Ramsey  F )  <_  0  <->  ( M Ramsey  F )  =  0 ) )
3836, 37syl 16 . 2  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( ( M Ramsey  F )  <_  0  <->  ( M Ramsey  F )  =  0 ) )
3934, 38mpbid 210 1  |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( C  e.  R  /\  ( F `  C
)  =  0 ) )  ->  ( M Ramsey  F )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815   {crab 2818   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   class class class wbr 4447   `'ccnv 4998   "cima 5002   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   0cc0 9488    <_ cle 9625   NNcn 10532   NN0cn0 10791   #chash 12369   Ramsey cram 14372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-seq 12072  df-fac 12318  df-bc 12345  df-hash 12370  df-ram 14374
This theorem is referenced by:  ramz  14398  ramcl  14402
  Copyright terms: Public domain W3C validator