MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramval Structured version   Unicode version

Theorem ramval 14735
Description: The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramval  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramval
Dummy variables  y  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ram 14728 . . 3  |- Ramsey  =  ( m  e.  NN0 , 
r  e.  _V  |->  sup ( { n  e. 
NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  `'  <  ) )
21a1i 11 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  -> Ramsey 
=  ( m  e. 
NN0 ,  r  e.  _V  |->  sup ( { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  `'  <  ) ) )
3 simplrr 763 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  r  =  F )
43dmeqd 5026 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  dom  r  =  dom  F )
5 simpll3 1038 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  F : R
--> NN0 )
6 fdm 5718 . . . . . . . . . . . 12  |-  ( F : R --> NN0  ->  dom 
F  =  R )
75, 6syl 17 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  dom  F  =  R )
84, 7eqtrd 2443 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  dom  r  =  R )
9 simplrl 762 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  m  =  M )
109eqeq2d 2416 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( ( # `
 y )  =  m  <->  ( # `  y
)  =  M ) )
1110rabbidv 3051 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  { y  e.  ~P s  |  (
# `  y )  =  m }  =  {
y  e.  ~P s  |  ( # `  y
)  =  M }
)
12 vex 3062 . . . . . . . . . . . 12  |-  s  e. 
_V
13 simpll1 1036 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  M  e.  NN0 )
14 ramval.c . . . . . . . . . . . . 13  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
1514hashbcval 14729 . . . . . . . . . . . 12  |-  ( ( s  e.  _V  /\  M  e.  NN0 )  -> 
( s C M )  =  { y  e.  ~P s  |  ( # `  y
)  =  M }
)
1612, 13, 15sylancr 661 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( s C M )  =  {
y  e.  ~P s  |  ( # `  y
)  =  M }
)
1711, 16eqtr4d 2446 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  { y  e.  ~P s  |  (
# `  y )  =  m }  =  ( s C M ) )
188, 17oveq12d 6296 . . . . . . . . 9  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( dom  r  ^m  { y  e. 
~P s  |  (
# `  y )  =  m } )  =  ( R  ^m  (
s C M ) ) )
1918raleqdv 3010 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. f  e.  ( dom  r  ^m  { y  e. 
~P s  |  (
# `  y )  =  m } ) E. c  e.  dom  r E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) )
20 simpr 459 . . . . . . . . . . . . 13  |-  ( ( m  =  M  /\  r  =  F )  ->  r  =  F )
2120dmeqd 5026 . . . . . . . . . . . 12  |-  ( ( m  =  M  /\  r  =  F )  ->  dom  r  =  dom  F )
2263ad2ant3 1020 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  dom  F  =  R )
2321, 22sylan9eqr 2465 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  dom  r  =  R )
2423ad2antrr 724 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R
--> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  ->  dom  r  =  R )
253ad2antrr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
r  =  F )
2625fveq1d 5851 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( r `  c
)  =  ( F `
 c ) )
2726breq1d 4405 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( ( r `  c )  <_  ( # `
 x )  <->  ( F `  c )  <_  ( # `
 x ) ) )
289ad2antrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  m  =  M )
2928oveq2d 6294 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C m )  =  ( x C M ) )
30 vex 3062 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
3113ad2antrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  M  e.  NN0 )
3228, 31eqeltrd 2490 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  m  e.  NN0 )
3314hashbcval 14729 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  m  e.  NN0 )  -> 
( x C m )  =  { y  e.  ~P x  |  ( # `  y
)  =  m }
)
3430, 32, 33sylancr 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C m )  =  { y  e.  ~P x  |  ( # `  y
)  =  m }
)
3529, 34eqtr3d 2445 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C M )  =  { y  e.  ~P x  |  ( # `  y
)  =  m }
)
3635sseq1d 3469 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( ( x C M )  C_  ( `' f " {
c } )  <->  { y  e.  ~P x  |  (
# `  y )  =  m }  C_  ( `' f " {
c } ) ) )
37 rabss 3516 . . . . . . . . . . . . . 14  |-  ( { y  e.  ~P x  |  ( # `  y
)  =  m }  C_  ( `' f " { c } )  <->  A. y  e.  ~P  x ( ( # `  y )  =  m  ->  y  e.  ( `' f " {
c } ) ) )
38 elmapi 7478 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  e.  ( R  ^m  ( s C M ) )  ->  f : ( s C M ) --> R )
3938ad3antlr 729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  f :
( s C M ) --> R )
40 ffn 5714 . . . . . . . . . . . . . . . . . . 19  |-  ( f : ( s C M ) --> R  -> 
f  Fn  ( s C M ) )
41 fniniseg 5986 . . . . . . . . . . . . . . . . . . 19  |-  ( f  Fn  ( s C M )  ->  (
y  e.  ( `' f " { c } )  <->  ( y  e.  ( s C M )  /\  ( f `
 y )  =  c ) ) )
4239, 40, 413syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  ( y  e.  ( `' f " { c } )  <-> 
( y  e.  ( s C M )  /\  ( f `  y )  =  c ) ) )
4335eleq2d 2472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( y  e.  ( x C M )  <-> 
y  e.  { y  e.  ~P x  |  ( # `  y
)  =  m }
) )
44 rabid 2984 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  { y  e. 
~P x  |  (
# `  y )  =  m }  <->  ( y  e.  ~P x  /\  ( # `
 y )  =  m ) )
4543, 44syl6bb 261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( y  e.  ( x C M )  <-> 
( y  e.  ~P x  /\  ( # `  y
)  =  m ) ) )
4645biimpar 483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  y  e.  ( x C M ) )
4712a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
s  e.  _V )
48 elpwi 3964 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ~P s  ->  x  C_  s )
4948adantl 464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  x  C_  s )
5014hashbcss 14731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s  e.  _V  /\  x  C_  s  /\  M  e.  NN0 )  ->  (
x C M ) 
C_  ( s C M ) )
5147, 49, 31, 50syl3anc 1230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C M )  C_  ( s C M ) )
5251sselda 3442 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  y  e.  ( x C M ) )  -> 
y  e.  ( s C M ) )
5346, 52syldan 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  y  e.  ( s C M ) )
5453biantrurd 506 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  ( (
f `  y )  =  c  <->  ( y  e.  ( s C M )  /\  ( f `
 y )  =  c ) ) )
5542, 54bitr4d 256 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  ( y  e.  ( `' f " { c } )  <-> 
( f `  y
)  =  c ) )
5655anassrs 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  y  e.  ~P x
)  /\  ( # `  y
)  =  m )  ->  ( y  e.  ( `' f " { c } )  <-> 
( f `  y
)  =  c ) )
5756pm5.74da 685 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  y  e.  ~P x
)  ->  ( (
( # `  y )  =  m  ->  y  e.  ( `' f " { c } ) )  <->  ( ( # `  y )  =  m  ->  ( f `  y )  =  c ) ) )
5857ralbidva 2840 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( A. y  e. 
~P  x ( (
# `  y )  =  m  ->  y  e.  ( `' f " { c } ) )  <->  A. y  e.  ~P  x ( ( # `  y )  =  m  ->  ( f `  y )  =  c ) ) )
5937, 58syl5bb 257 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( { y  e. 
~P x  |  (
# `  y )  =  m }  C_  ( `' f " {
c } )  <->  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) )
6036, 59bitr2d 254 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c )  <->  ( x C M )  C_  ( `' f " {
c } ) ) )
6127, 60anbi12d 709 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6261rexbidva 2915 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R
--> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  ->  ( E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6324, 62rexeqbidv 3019 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R
--> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  ->  ( E. c  e.  dom  r E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6463ralbidva 2840 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6519, 64bitrd 253 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. f  e.  ( dom  r  ^m  { y  e. 
~P s  |  (
# `  y )  =  m } ) E. c  e.  dom  r E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6665imbi2d 314 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( (
n  <_  ( # `  s
)  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) )  <-> 
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) ) )
6766albidv 1734 . . . . 5  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. s ( n  <_ 
( # `  s )  ->  A. f  e.  ( dom  r  ^m  {
y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) )  <->  A. s ( n  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
6867rabbidva 3050 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) }  =  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } )
69 ramval.t . . . 4  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
7068, 69syl6eqr 2461 . . 3  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) }  =  T )
7170supeq1d 7939 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  sup ( { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  `'  <  )  =  sup ( T ,  RR* ,  `'  <  ) )
72 simp1 997 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  M  e.  NN0 )
73 simp3 999 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  F : R --> NN0 )
74 simp2 998 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  R  e.  V )
75 fex 6126 . . 3  |-  ( ( F : R --> NN0  /\  R  e.  V )  ->  F  e.  _V )
7673, 74, 75syl2anc 659 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  F  e.  _V )
77 xrltso 11400 . . . . 5  |-  <  Or  RR*
78 cnvso 5363 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
7977, 78mpbi 208 . . . 4  |-  `'  <  Or 
RR*
8079supex 7956 . . 3  |-  sup ( T ,  RR* ,  `'  <  )  e.  _V
8180a1i 11 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  sup ( T ,  RR* ,  `'  <  )  e.  _V )
822, 71, 72, 76, 81ovmpt2d 6411 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974   A.wal 1403    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   {crab 2758   _Vcvv 3059    C_ wss 3414   ~Pcpw 3955   {csn 3972   class class class wbr 4395    Or wor 4743   `'ccnv 4822   dom cdm 4823   "cima 4826    Fn wfn 5564   -->wf 5565   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280    ^m cmap 7457   supcsup 7934   RR*cxr 9657    < clt 9658    <_ cle 9659   NN0cn0 10836   #chash 12452   Ramsey cram 14726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-pre-lttri 9596  ax-pre-lttrn 9597
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-ram 14728
This theorem is referenced by:  ramcl2lem  14736
  Copyright terms: Public domain W3C validator