MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramval Structured version   Unicode version

Theorem ramval 14385
Description: The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramval  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramval
Dummy variables  y  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ram 14378 . . 3  |- Ramsey  =  ( m  e.  NN0 , 
r  e.  _V  |->  sup ( { n  e. 
NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  `'  <  ) )
21a1i 11 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  -> Ramsey 
=  ( m  e. 
NN0 ,  r  e.  _V  |->  sup ( { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  `'  <  ) ) )
3 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  r  =  F )
43dmeqd 5205 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  dom  r  =  dom  F )
5 simpll3 1037 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  F : R
--> NN0 )
6 fdm 5735 . . . . . . . . . . . 12  |-  ( F : R --> NN0  ->  dom 
F  =  R )
75, 6syl 16 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  dom  F  =  R )
84, 7eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  dom  r  =  R )
9 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  m  =  M )
109eqeq2d 2481 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( ( # `
 y )  =  m  <->  ( # `  y
)  =  M ) )
1110rabbidv 3105 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  { y  e.  ~P s  |  (
# `  y )  =  m }  =  {
y  e.  ~P s  |  ( # `  y
)  =  M }
)
12 vex 3116 . . . . . . . . . . . 12  |-  s  e. 
_V
13 simpll1 1035 . . . . . . . . . . . 12  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  M  e.  NN0 )
14 ramval.c . . . . . . . . . . . . 13  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
1514hashbcval 14379 . . . . . . . . . . . 12  |-  ( ( s  e.  _V  /\  M  e.  NN0 )  -> 
( s C M )  =  { y  e.  ~P s  |  ( # `  y
)  =  M }
)
1612, 13, 15sylancr 663 . . . . . . . . . . 11  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( s C M )  =  {
y  e.  ~P s  |  ( # `  y
)  =  M }
)
1711, 16eqtr4d 2511 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  { y  e.  ~P s  |  (
# `  y )  =  m }  =  ( s C M ) )
188, 17oveq12d 6302 . . . . . . . . 9  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( dom  r  ^m  { y  e. 
~P s  |  (
# `  y )  =  m } )  =  ( R  ^m  (
s C M ) ) )
1918raleqdv 3064 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. f  e.  ( dom  r  ^m  { y  e. 
~P s  |  (
# `  y )  =  m } ) E. c  e.  dom  r E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) )
20 simpr 461 . . . . . . . . . . . . 13  |-  ( ( m  =  M  /\  r  =  F )  ->  r  =  F )
2120dmeqd 5205 . . . . . . . . . . . 12  |-  ( ( m  =  M  /\  r  =  F )  ->  dom  r  =  dom  F )
2263ad2ant3 1019 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  dom  F  =  R )
2321, 22sylan9eqr 2530 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  dom  r  =  R )
2423ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R
--> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  ->  dom  r  =  R )
253ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
r  =  F )
2625fveq1d 5868 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( r `  c
)  =  ( F `
 c ) )
2726breq1d 4457 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( ( r `  c )  <_  ( # `
 x )  <->  ( F `  c )  <_  ( # `
 x ) ) )
289ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  m  =  M )
2928oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C m )  =  ( x C M ) )
30 vex 3116 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
3113ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  M  e.  NN0 )
3228, 31eqeltrd 2555 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  m  e.  NN0 )
3314hashbcval 14379 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  m  e.  NN0 )  -> 
( x C m )  =  { y  e.  ~P x  |  ( # `  y
)  =  m }
)
3430, 32, 33sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C m )  =  { y  e.  ~P x  |  ( # `  y
)  =  m }
)
3529, 34eqtr3d 2510 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C M )  =  { y  e.  ~P x  |  ( # `  y
)  =  m }
)
3635sseq1d 3531 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( ( x C M )  C_  ( `' f " {
c } )  <->  { y  e.  ~P x  |  (
# `  y )  =  m }  C_  ( `' f " {
c } ) ) )
37 rabss 3577 . . . . . . . . . . . . . 14  |-  ( { y  e.  ~P x  |  ( # `  y
)  =  m }  C_  ( `' f " { c } )  <->  A. y  e.  ~P  x ( ( # `  y )  =  m  ->  y  e.  ( `' f " {
c } ) ) )
38 elmapi 7440 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  e.  ( R  ^m  ( s C M ) )  ->  f : ( s C M ) --> R )
3938ad3antlr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  f :
( s C M ) --> R )
40 ffn 5731 . . . . . . . . . . . . . . . . . . 19  |-  ( f : ( s C M ) --> R  -> 
f  Fn  ( s C M ) )
41 fniniseg 6002 . . . . . . . . . . . . . . . . . . 19  |-  ( f  Fn  ( s C M )  ->  (
y  e.  ( `' f " { c } )  <->  ( y  e.  ( s C M )  /\  ( f `
 y )  =  c ) ) )
4239, 40, 413syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  ( y  e.  ( `' f " { c } )  <-> 
( y  e.  ( s C M )  /\  ( f `  y )  =  c ) ) )
4335eleq2d 2537 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( y  e.  ( x C M )  <-> 
y  e.  { y  e.  ~P x  |  ( # `  y
)  =  m }
) )
44 rabid 3038 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  { y  e. 
~P x  |  (
# `  y )  =  m }  <->  ( y  e.  ~P x  /\  ( # `
 y )  =  m ) )
4543, 44syl6bb 261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( y  e.  ( x C M )  <-> 
( y  e.  ~P x  /\  ( # `  y
)  =  m ) ) )
4645biimpar 485 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  y  e.  ( x C M ) )
4712a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
s  e.  _V )
48 elpwi 4019 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  ~P s  ->  x  C_  s )
4948adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  ->  x  C_  s )
5014hashbcss 14381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s  e.  _V  /\  x  C_  s  /\  M  e.  NN0 )  ->  (
x C M ) 
C_  ( s C M ) )
5147, 49, 31, 50syl3anc 1228 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( x C M )  C_  ( s C M ) )
5251sselda 3504 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  y  e.  ( x C M ) )  -> 
y  e.  ( s C M ) )
5346, 52syldan 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  y  e.  ( s C M ) )
5453biantrurd 508 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  ( (
f `  y )  =  c  <->  ( y  e.  ( s C M )  /\  ( f `
 y )  =  c ) ) )
5542, 54bitr4d 256 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  ( y  e.  ~P x  /\  ( # `  y
)  =  m ) )  ->  ( y  e.  ( `' f " { c } )  <-> 
( f `  y
)  =  c ) )
5655anassrs 648 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  y  e.  ~P x
)  /\  ( # `  y
)  =  m )  ->  ( y  e.  ( `' f " { c } )  <-> 
( f `  y
)  =  c ) )
5756pm5.74da 687 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  /\  y  e.  ~P x
)  ->  ( (
( # `  y )  =  m  ->  y  e.  ( `' f " { c } ) )  <->  ( ( # `  y )  =  m  ->  ( f `  y )  =  c ) ) )
5857ralbidva 2900 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( A. y  e. 
~P  x ( (
# `  y )  =  m  ->  y  e.  ( `' f " { c } ) )  <->  A. y  e.  ~P  x ( ( # `  y )  =  m  ->  ( f `  y )  =  c ) ) )
5937, 58syl5bb 257 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( { y  e. 
~P x  |  (
# `  y )  =  m }  C_  ( `' f " {
c } )  <->  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) )
6036, 59bitr2d 254 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c )  <->  ( x C M )  C_  ( `' f " {
c } ) ) )
6127, 60anbi12d 710 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  /\  x  e.  ~P s )  -> 
( ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6261rexbidva 2970 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R
--> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  ->  ( E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6324, 62rexeqbidv 3073 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R
--> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  /\  f  e.  ( R  ^m  (
s C M ) ) )  ->  ( E. c  e.  dom  r E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6463ralbidva 2900 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6519, 64bitrd 253 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. f  e.  ( dom  r  ^m  { y  e. 
~P s  |  (
# `  y )  =  m } ) E. c  e.  dom  r E. x  e.  ~P  s ( ( r `
 c )  <_ 
( # `  x )  /\  A. y  e. 
~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) )  <->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
6665imbi2d 316 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( (
n  <_  ( # `  s
)  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) )  <-> 
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) ) )
6766albidv 1689 . . . . 5  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  (
m  =  M  /\  r  =  F )
)  /\  n  e.  NN0 )  ->  ( A. s ( n  <_ 
( # `  s )  ->  A. f  e.  ( dom  r  ^m  {
y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) )  <->  A. s ( n  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
6867rabbidva 3104 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) }  =  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } )
69 ramval.t . . . 4  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
7068, 69syl6eqr 2526 . . 3  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) }  =  T )
7170supeq1d 7906 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( m  =  M  /\  r  =  F ) )  ->  sup ( { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  `'  <  )  =  sup ( T ,  RR* ,  `'  <  ) )
72 simp1 996 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  M  e.  NN0 )
73 simp3 998 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  F : R --> NN0 )
74 simp2 997 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  R  e.  V )
75 fex 6133 . . 3  |-  ( ( F : R --> NN0  /\  R  e.  V )  ->  F  e.  _V )
7673, 74, 75syl2anc 661 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  F  e.  _V )
77 xrltso 11347 . . . . 5  |-  <  Or  RR*
78 cnvso 5546 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
7977, 78mpbi 208 . . . 4  |-  `'  <  Or 
RR*
8079supex 7923 . . 3  |-  sup ( T ,  RR* ,  `'  <  )  e.  _V
8180a1i 11 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  sup ( T ,  RR* ,  `'  <  )  e.  _V )
822, 71, 72, 76, 81ovmpt2d 6414 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    C_ wss 3476   ~Pcpw 4010   {csn 4027   class class class wbr 4447    Or wor 4799   `'ccnv 4998   dom cdm 4999   "cima 5002    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286    ^m cmap 7420   supcsup 7900   RR*cxr 9627    < clt 9628    <_ cle 9629   NN0cn0 10795   #chash 12373   Ramsey cram 14376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-pre-lttri 9566  ax-pre-lttrn 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-ram 14378
This theorem is referenced by:  ramcl2lem  14386
  Copyright terms: Public domain W3C validator