MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Structured version   Unicode version

Theorem ramub2 14196
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
rami.m  |-  ( ph  ->  M  e.  NN0 )
rami.r  |-  ( ph  ->  R  e.  V )
rami.f  |-  ( ph  ->  F : R --> NN0 )
ramub2.n  |-  ( ph  ->  N  e.  NN0 )
ramub2.i  |-  ( (
ph  /\  ( ( # `
 s )  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )
Assertion
Ref Expression
ramub2  |-  ( ph  ->  ( M Ramsey  F )  <_  N )
Distinct variable groups:    f, c,
s, x, C    ph, c,
f, s, x    F, c, f, s, x    a,
b, c, f, i, s, x, M    R, c, f, s, x    N, a, c, f, i, s, x    V, c, f, s, x
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    F( i, a, b)    N( b)    V( i, a, b)

Proof of Theorem ramub2
Dummy variables  g 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 rami.m . 2  |-  ( ph  ->  M  e.  NN0 )
3 rami.r . 2  |-  ( ph  ->  R  e.  V )
4 rami.f . 2  |-  ( ph  ->  F : R --> NN0 )
5 ramub2.n . 2  |-  ( ph  ->  N  e.  NN0 )
65adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  N  e.  NN0 )
7 hashfz1 12237 . . . . . . 7  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
86, 7syl 16 . . . . . 6  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( # `  (
1 ... N ) )  =  N )
9 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  N  <_  ( # `
 t ) )
108, 9eqbrtrd 4423 . . . . 5  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( # `  (
1 ... N ) )  <_  ( # `  t
) )
11 fzfid 11915 . . . . . 6  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( 1 ... N )  e.  Fin )
12 vex 3081 . . . . . 6  |-  t  e. 
_V
13 hashdom 12263 . . . . . 6  |-  ( ( ( 1 ... N
)  e.  Fin  /\  t  e.  _V )  ->  ( ( # `  (
1 ... N ) )  <_  ( # `  t
)  <->  ( 1 ... N )  ~<_  t ) )
1411, 12, 13sylancl 662 . . . . 5  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( ( # `  ( 1 ... N
) )  <_  ( # `
 t )  <->  ( 1 ... N )  ~<_  t ) )
1510, 14mpbid 210 . . . 4  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( 1 ... N )  ~<_  t )
1612domen 7436 . . . 4  |-  ( ( 1 ... N )  ~<_  t  <->  E. s ( ( 1 ... N ) 
~~  s  /\  s  C_  t ) )
1715, 16sylib 196 . . 3  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  E. s ( ( 1 ... N ) 
~~  s  /\  s  C_  t ) )
18 simpll 753 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ph )
19 ensym 7471 . . . . . . . 8  |-  ( ( 1 ... N ) 
~~  s  ->  s  ~~  ( 1 ... N
) )
2019ad2antrl 727 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  s  ~~  ( 1 ... N
) )
21 hasheni 12239 . . . . . . 7  |-  ( s 
~~  ( 1 ... N )  ->  ( # `
 s )  =  ( # `  (
1 ... N ) ) )
2220, 21syl 16 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( # `
 s )  =  ( # `  (
1 ... N ) ) )
235ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  N  e.  NN0 )
2423, 7syl 16 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( # `
 ( 1 ... N ) )  =  N )
2522, 24eqtrd 2495 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( # `
 s )  =  N )
26 simplrr 760 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  g : ( t C M ) --> R )
2712a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  t  e.  _V )
28 simprr 756 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  s  C_  t )
292ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  M  e.  NN0 )
301hashbcss 14186 . . . . . . 7  |-  ( ( t  e.  _V  /\  s  C_  t  /\  M  e.  NN0 )  ->  (
s C M ) 
C_  ( t C M ) )
3127, 28, 29, 30syl3anc 1219 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
s C M ) 
C_  ( t C M ) )
32 fssres 5689 . . . . . 6  |-  ( ( g : ( t C M ) --> R  /\  ( s C M )  C_  (
t C M ) )  ->  ( g  |`  ( s C M ) ) : ( s C M ) --> R )
3326, 31, 32syl2anc 661 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
g  |`  ( s C M ) ) : ( s C M ) --> R )
34 vex 3081 . . . . . . 7  |-  g  e. 
_V
3534resex 5261 . . . . . 6  |-  ( g  |`  ( s C M ) )  e.  _V
36 feq1 5653 . . . . . . . . 9  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
f : ( s C M ) --> R  <-> 
( g  |`  (
s C M ) ) : ( s C M ) --> R ) )
3736anbi2d 703 . . . . . . . 8  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ( # `  s
)  =  N  /\  f : ( s C M ) --> R )  <-> 
( ( # `  s
)  =  N  /\  ( g  |`  (
s C M ) ) : ( s C M ) --> R ) ) )
3837anbi2d 703 . . . . . . 7  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ph  /\  (
( # `  s )  =  N  /\  f : ( s C M ) --> R ) )  <->  ( ph  /\  ( ( # `  s
)  =  N  /\  ( g  |`  (
s C M ) ) : ( s C M ) --> R ) ) ) )
39 cnveq 5124 . . . . . . . . . . . 12  |-  ( f  =  ( g  |`  ( s C M ) )  ->  `' f  =  `' (
g  |`  ( s C M ) ) )
4039imaeq1d 5279 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  ( s C M ) )  ->  ( `' f " {
c } )  =  ( `' ( g  |`  ( s C M ) ) " {
c } ) )
41 cnvresima 5438 . . . . . . . . . . 11  |-  ( `' ( g  |`  (
s C M ) ) " { c } )  =  ( ( `' g " { c } )  i^i  ( s C M ) )
4240, 41syl6eq 2511 . . . . . . . . . 10  |-  ( f  =  ( g  |`  ( s C M ) )  ->  ( `' f " {
c } )  =  ( ( `' g
" { c } )  i^i  ( s C M ) ) )
4342sseq2d 3495 . . . . . . . . 9  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( x C M )  C_  ( `' f " { c } )  <->  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )
4443anbi2d 703 . . . . . . . 8  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) )  <->  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) ) )
45442rexbidv 2880 . . . . . . 7  |-  ( f  =  ( g  |`  ( s C M ) )  ->  ( E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) ) )
4638, 45imbi12d 320 . . . . . 6  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ( ph  /\  ( ( # `  s
)  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  ( ( ph  /\  ( ( # `  s
)  =  N  /\  ( g  |`  (
s C M ) ) : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) ) ) )
47 ramub2.i . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )
4835, 46, 47vtocl 3130 . . . . 5  |-  ( (
ph  /\  ( ( # `
 s )  =  N  /\  ( g  |`  ( s C M ) ) : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )
4918, 25, 33, 48syl12anc 1217 . . . 4  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )
50 sstr 3475 . . . . . . . . . 10  |-  ( ( x  C_  s  /\  s  C_  t )  ->  x  C_  t )
5150expcom 435 . . . . . . . . 9  |-  ( s 
C_  t  ->  (
x  C_  s  ->  x 
C_  t ) )
5251ad2antll 728 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
x  C_  s  ->  x 
C_  t ) )
53 selpw 3978 . . . . . . . 8  |-  ( x  e.  ~P s  <->  x  C_  s
)
54 selpw 3978 . . . . . . . 8  |-  ( x  e.  ~P t  <->  x  C_  t
)
5552, 53, 543imtr4g 270 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
x  e.  ~P s  ->  x  e.  ~P t
) )
56 id 22 . . . . . . . . . 10  |-  ( ( x C M ) 
C_  ( ( `' g " { c } )  i^i  (
s C M ) )  ->  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) )
57 inss1 3681 . . . . . . . . . 10  |-  ( ( `' g " {
c } )  i^i  ( s C M ) )  C_  ( `' g " {
c } )
5856, 57syl6ss 3479 . . . . . . . . 9  |-  ( ( x C M ) 
C_  ( ( `' g " { c } )  i^i  (
s C M ) )  ->  ( x C M )  C_  ( `' g " {
c } ) )
5958a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
( x C M )  C_  ( ( `' g " {
c } )  i^i  ( s C M ) )  ->  (
x C M ) 
C_  ( `' g
" { c } ) ) )
6059anim2d 565 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( ( `' g " {
c } )  i^i  ( s C M ) ) )  -> 
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' g " { c } ) ) ) )
6155, 60anim12d 563 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
( x  e.  ~P s  /\  ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )  ->  ( x  e.  ~P t  /\  (
( F `  c
)  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' g " {
c } ) ) ) ) )
6261reximdv2 2931 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) )  ->  E. x  e.  ~P  t ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' g " {
c } ) ) ) )
6362reximdv 2933 . . . 4  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) )  ->  E. c  e.  R  E. x  e.  ~P  t ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' g " {
c } ) ) ) )
6449, 63mpd 15 . . 3  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  E. c  e.  R  E. x  e.  ~P  t ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' g " {
c } ) ) )
6517, 64exlimddv 1693 . 2  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  t ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' g " {
c } ) ) )
661, 2, 3, 4, 5, 65ramub 14195 1  |-  ( ph  ->  ( M Ramsey  F )  <_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2800   {crab 2803   _Vcvv 3078    i^i cin 3438    C_ wss 3439   ~Pcpw 3971   {csn 3988   class class class wbr 4403   `'ccnv 4950    |` cres 4953   "cima 4954   -->wf 5525   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205    ~~ cen 7420    ~<_ cdom 7421   Fincfn 7423   1c1 9397    <_ cle 9533   NN0cn0 10693   ...cfz 11557   #chash 12223   Ramsey cram 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-card 8223  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-n0 10694  df-z 10761  df-uz 10976  df-fz 11558  df-hash 12224  df-ram 14183
This theorem is referenced by:  ramub1  14210
  Copyright terms: Public domain W3C validator