MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Unicode version

Theorem ramub1lem2 13350
Description: Lemma for ramub1 13351. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m  |-  ( ph  ->  M  e.  NN )
ramub1.r  |-  ( ph  ->  R  e.  Fin )
ramub1.f  |-  ( ph  ->  F : R --> NN )
ramub1.g  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
ramub1.1  |-  ( ph  ->  G : R --> NN0 )
ramub1.2  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
ramub1.3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramub1.4  |-  ( ph  ->  S  e.  Fin )
ramub1.5  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
ramub1.6  |-  ( ph  ->  K : ( S C M ) --> R )
ramub1.x  |-  ( ph  ->  X  e.  S )
ramub1.h  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
Assertion
Ref Expression
ramub1lem2  |-  ( ph  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
Distinct variable groups:    x, u, c, y, z, F    a,
b, c, i, u, x, y, z, M    G, a, c, i, u, x, y, z    R, c, u, x, y, z    ph, c, u, x, y, z    S, a, c, i, u, x, y, z    C, c, u, x, y, z    H, c, u, x, y, z    K, c, u, x, y, z    X, a, c, i, u, x, y, z
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    S( b)    F( i, a, b)    G( b)    H( i, a, b)    K( i, a, b)    X( b)

Proof of Theorem ramub1lem2
Dummy variables  d 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramub1.m . . . 4  |-  ( ph  ->  M  e.  NN )
3 nnm1nn0 10217 . . . 4  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
42, 3syl 16 . . 3  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
5 ramub1.r . . 3  |-  ( ph  ->  R  e.  Fin )
6 ramub1.1 . . 3  |-  ( ph  ->  G : R --> NN0 )
7 ramub1.2 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
8 ramub1.4 . . . 4  |-  ( ph  ->  S  e.  Fin )
9 diffi 7298 . . . 4  |-  ( S  e.  Fin  ->  ( S  \  { X }
)  e.  Fin )
108, 9syl 16 . . 3  |-  ( ph  ->  ( S  \  { X } )  e.  Fin )
117nn0red 10231 . . . . 5  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  RR )
1211leidd 9549 . . . 4  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  <_  ( ( M  - 
1 ) Ramsey  G )
)
13 hashcl 11594 . . . . . . 7  |-  ( ( S  \  { X } )  e.  Fin  ->  ( # `  ( S  \  { X }
) )  e.  NN0 )
1410, 13syl 16 . . . . . 6  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  e.  NN0 )
1514nn0cnd 10232 . . . . 5  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  e.  CC )
167nn0cnd 10232 . . . . 5  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  CC )
17 ax-1cn 9004 . . . . . 6  |-  1  e.  CC
1817a1i 11 . . . . 5  |-  ( ph  ->  1  e.  CC )
19 undif1 3663 . . . . . . . 8  |-  ( ( S  \  { X } )  u.  { X } )  =  ( S  u.  { X } )
20 ramub1.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  S )
2120snssd 3903 . . . . . . . . 9  |-  ( ph  ->  { X }  C_  S )
22 ssequn2 3480 . . . . . . . . 9  |-  ( { X }  C_  S  <->  ( S  u.  { X } )  =  S )
2321, 22sylib 189 . . . . . . . 8  |-  ( ph  ->  ( S  u.  { X } )  =  S )
2419, 23syl5eq 2448 . . . . . . 7  |-  ( ph  ->  ( ( S  \  { X } )  u. 
{ X } )  =  S )
2524fveq2d 5691 . . . . . 6  |-  ( ph  ->  ( # `  (
( S  \  { X } )  u.  { X } ) )  =  ( # `  S
) )
26 neldifsnd 3890 . . . . . . 7  |-  ( ph  ->  -.  X  e.  ( S  \  { X } ) )
27 hashunsng 11620 . . . . . . . 8  |-  ( X  e.  S  ->  (
( ( S  \  { X } )  e. 
Fin  /\  -.  X  e.  ( S  \  { X } ) )  -> 
( # `  ( ( S  \  { X } )  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) ) )
2820, 27syl 16 . . . . . . 7  |-  ( ph  ->  ( ( ( S 
\  { X }
)  e.  Fin  /\  -.  X  e.  ( S  \  { X }
) )  ->  ( # `
 ( ( S 
\  { X }
)  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) ) )
2910, 26, 28mp2and 661 . . . . . 6  |-  ( ph  ->  ( # `  (
( S  \  { X } )  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) )
30 ramub1.5 . . . . . 6  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
3125, 29, 303eqtr3d 2444 . . . . 5  |-  ( ph  ->  ( ( # `  ( S  \  { X }
) )  +  1 )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
3215, 16, 18, 31addcan2ad 9228 . . . 4  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  =  ( ( M  -  1 ) Ramsey  G ) )
3312, 32breqtrrd 4198 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  <_  ( # `  ( S  \  { X }
) ) )
34 ramub1.6 . . . . . 6  |-  ( ph  ->  K : ( S C M ) --> R )
3534adantr 452 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  K : ( S C M ) --> R )
361hashbcval 13325 . . . . . . . . . . . . . . 15  |-  ( ( ( S  \  { X } )  e.  Fin  /\  ( M  -  1 )  e.  NN0 )  ->  ( ( S  \  { X } ) C ( M  -  1 ) )  =  {
x  e.  ~P ( S  \  { X }
)  |  ( # `  x )  =  ( M  -  1 ) } )
3710, 4, 36syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S  \  { X } ) C ( M  -  1 ) )  =  {
x  e.  ~P ( S  \  { X }
)  |  ( # `  x )  =  ( M  -  1 ) } )
3837eleq2d 2471 . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  <->  u  e.  { x  e.  ~P ( S  \  { X } )  |  ( # `  x
)  =  ( M  -  1 ) } ) )
39 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  ( # `
 x )  =  ( # `  u
) )
4039eqeq1d 2412 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
( # `  x )  =  ( M  - 
1 )  <->  ( # `  u
)  =  ( M  -  1 ) ) )
4140elrab 3052 . . . . . . . . . . . . 13  |-  ( u  e.  { x  e. 
~P ( S  \  { X } )  |  ( # `  x
)  =  ( M  -  1 ) }  <-> 
( u  e.  ~P ( S  \  { X } )  /\  ( # `
 u )  =  ( M  -  1 ) ) )
4238, 41syl6bb 253 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  <->  ( u  e. 
~P ( S  \  { X } )  /\  ( # `  u )  =  ( M  - 
1 ) ) ) )
4342simprbda 607 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  e.  ~P ( S  \  { X }
) )
4443elpwid 3768 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  C_  ( S  \  { X } ) )
4544difss2d 3437 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  C_  S )
4621adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  { X }  C_  S
)
4745, 46unssd 3483 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  C_  S
)
48 vex 2919 . . . . . . . . . 10  |-  u  e. 
_V
49 snex 4365 . . . . . . . . . 10  |-  { X }  e.  _V
5048, 49unex 4666 . . . . . . . . 9  |-  ( u  u.  { X }
)  e.  _V
5150elpw 3765 . . . . . . . 8  |-  ( ( u  u.  { X } )  e.  ~P S 
<->  ( u  u.  { X } )  C_  S
)
5247, 51sylibr 204 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  ~P S )
5310adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( S  \  { X } )  e.  Fin )
54 ssfi 7288 . . . . . . . . . 10  |-  ( ( ( S  \  { X } )  e.  Fin  /\  u  C_  ( S  \  { X } ) )  ->  u  e.  Fin )
5553, 44, 54syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  e.  Fin )
56 neldifsnd 3890 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  -.  X  e.  ( S  \  { X }
) )
5744, 56ssneldd 3311 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  -.  X  e.  u
)
5820adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  X  e.  S )
59 hashunsng 11620 . . . . . . . . . 10  |-  ( X  e.  S  ->  (
( u  e.  Fin  /\ 
-.  X  e.  u
)  ->  ( # `  (
u  u.  { X } ) )  =  ( ( # `  u
)  +  1 ) ) )
6058, 59syl 16 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( u  e. 
Fin  /\  -.  X  e.  u )  ->  ( # `
 ( u  u. 
{ X } ) )  =  ( (
# `  u )  +  1 ) ) )
6155, 57, 60mp2and 661 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  ( u  u.  { X }
) )  =  ( ( # `  u
)  +  1 ) )
6242simplbda 608 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  u )  =  ( M  - 
1 ) )
6362oveq1d 6055 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( # `  u
)  +  1 )  =  ( ( M  -  1 )  +  1 ) )
642nncnd 9972 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
65 npcan 9270 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
6664, 17, 65sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
6766adantr 452 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( M  - 
1 )  +  1 )  =  M )
6861, 63, 673eqtrd 2440 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  ( u  u.  { X }
) )  =  M )
69 fveq2 5687 . . . . . . . . 9  |-  ( x  =  ( u  u. 
{ X } )  ->  ( # `  x
)  =  ( # `  ( u  u.  { X } ) ) )
7069eqeq1d 2412 . . . . . . . 8  |-  ( x  =  ( u  u. 
{ X } )  ->  ( ( # `  x )  =  M  <-> 
( # `  ( u  u.  { X }
) )  =  M ) )
7170elrab 3052 . . . . . . 7  |-  ( ( u  u.  { X } )  e.  {
x  e.  ~P S  |  ( # `  x
)  =  M }  <->  ( ( u  u.  { X } )  e.  ~P S  /\  ( # `  (
u  u.  { X } ) )  =  M ) )
7252, 68, 71sylanbrc 646 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  {
x  e.  ~P S  |  ( # `  x
)  =  M }
)
732nnnn0d 10230 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
741hashbcval 13325 . . . . . . . 8  |-  ( ( S  e.  Fin  /\  M  e.  NN0 )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
758, 73, 74syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7675adantr 452 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7772, 76eleqtrrd 2481 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  ( S C M ) )
7835, 77ffvelrnd 5830 . . . 4  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( K `  (
u  u.  { X } ) )  e.  R )
79 ramub1.h . . . 4  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
8078, 79fmptd 5852 . . 3  |-  ( ph  ->  H : ( ( S  \  { X } ) C ( M  -  1 ) ) --> R )
811, 4, 5, 6, 7, 10, 33, 80rami 13338 . 2  |-  ( ph  ->  E. d  e.  R  E. w  e.  ~P  ( S  \  { X } ) ( ( G `  d )  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) )
8273adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  M  e.  NN0 )
835adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  R  e.  Fin )
84 ramub1.f . . . . . . . . . . . 12  |-  ( ph  ->  F : R --> NN )
8584adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  F : R
--> NN )
86 simprll 739 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  d  e.  R )
8785, 86ffvelrnd 5830 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( F `  d )  e.  NN )
88 nnm1nn0 10217 . . . . . . . . . 10  |-  ( ( F `  d )  e.  NN  ->  (
( F `  d
)  -  1 )  e.  NN0 )
8987, 88syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( ( F `  d )  -  1 )  e. 
NN0 )
9089adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( ( F `  d )  -  1 )  e. 
NN0 )
9185ffvelrnda 5829 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( F `  y )  e.  NN )
9291nnnn0d 10230 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( F `  y )  e.  NN0 )
93 ifcl 3735 . . . . . . . 8  |-  ( ( ( ( F `  d )  -  1 )  e.  NN0  /\  ( F `  y )  e.  NN0 )  ->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) )  e.  NN0 )
9490, 92, 93syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  if (
y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) )  e.  NN0 )
95 eqid 2404 . . . . . . 7  |-  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )  =  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )
9694, 95fmptd 5852 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) : R --> NN0 )
97 equequ2 1694 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
y  =  x  <->  y  =  d ) )
98 fveq2 5687 . . . . . . . . . . . . 13  |-  ( x  =  d  ->  ( F `  x )  =  ( F `  d ) )
9998oveq1d 6055 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
( F `  x
)  -  1 )  =  ( ( F `
 d )  - 
1 ) )
100 eqidd 2405 . . . . . . . . . . . 12  |-  ( x  =  d  ->  ( F `  y )  =  ( F `  y ) )
10197, 99, 100ifbieq12d 3721 . . . . . . . . . . 11  |-  ( x  =  d  ->  if ( y  =  x ,  ( ( F `
 x )  - 
1 ) ,  ( F `  y ) )  =  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )
102101mpteq2dv 4256 . . . . . . . . . 10  |-  ( x  =  d  ->  (
y  e.  R  |->  if ( y  =  x ,  ( ( F `
 x )  - 
1 ) ,  ( F `  y ) ) )  =  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )
103102oveq2d 6056 . . . . . . . . 9  |-  ( x  =  d  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `  y
) ) ) )  =  ( M Ramsey  (
y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) ) )
104 ramub1.g . . . . . . . . 9  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
105 ovex 6065 . . . . . . . . 9  |-  ( M Ramsey 
( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) )  e.  _V
106103, 104, 105fvmpt 5765 . . . . . . . 8  |-  ( d  e.  R  ->  ( G `  d )  =  ( M Ramsey  (
y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) ) )
10786, 106syl 16 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  =  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  y ) ) ) ) )
1086adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  G : R
--> NN0 )
109108, 86ffvelrnd 5830 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  e.  NN0 )
110107, 109eqeltrrd 2479 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )  e. 
NN0 )
111 simprlr 740 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  e.  ~P ( S  \  { X } ) )
112 simprrl 741 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  <_  ( # `
 w ) )
113107, 112eqbrtrrd 4194 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )  <_ 
( # `  w ) )
11434adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  K :
( S C M ) --> R )
1158adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  S  e.  Fin )
116111elpwid 3768 . . . . . . . . 9  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  C_  ( S  \  { X }
) )
117116difss2d 3437 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  C_  S
)
1181hashbcss 13327 . . . . . . . 8  |-  ( ( S  e.  Fin  /\  w  C_  S  /\  M  e.  NN0 )  ->  (
w C M ) 
C_  ( S C M ) )
119115, 117, 82, 118syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( w C M )  C_  ( S C M ) )
120 fssres 5569 . . . . . . 7  |-  ( ( K : ( S C M ) --> R  /\  ( w C M )  C_  ( S C M ) )  ->  ( K  |`  ( w C M ) ) : ( w C M ) --> R )
121114, 119, 120syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( K  |`  ( w C M ) ) : ( w C M ) --> R )
1221, 82, 83, 96, 110, 111, 113, 121rami 13338 . . . . 5  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  E. c  e.  R  E. v  e.  ~P  w ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) )
123 equequ1 1692 . . . . . . . . . . . . . 14  |-  ( y  =  c  ->  (
y  =  d  <->  c  =  d ) )
124 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( y  =  c  ->  ( F `  y )  =  ( F `  c ) )
125123, 124ifbieq2d 3719 . . . . . . . . . . . . 13  |-  ( y  =  c  ->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) )  =  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 c ) ) )
126 ovex 6065 . . . . . . . . . . . . . 14  |-  ( ( F `  d )  -  1 )  e. 
_V
127 fvex 5701 . . . . . . . . . . . . . 14  |-  ( F `
 c )  e. 
_V
128126, 127ifex 3757 . . . . . . . . . . . . 13  |-  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 c ) )  e.  _V
129125, 95, 128fvmpt 5765 . . . . . . . . . . . 12  |-  ( c  e.  R  ->  (
( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  =  if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) ) )
130129ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  =  if ( c  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  c ) ) )
131130breq1d 4182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) `  c
)  <_  ( # `  v
)  <->  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v ) ) )
132131anbi1d 686 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) )  <->  ( if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) ) ) )
1332ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  M  e.  NN )
1345ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  R  e.  Fin )
13584ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  F : R --> NN )
1366ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  G : R --> NN0 )
1377ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( ( M  -  1 ) Ramsey  G
)  e.  NN0 )
1388ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  S  e.  Fin )
13930ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
14034ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  K : ( S C M ) --> R )
14120ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  X  e.  S
)
14286adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  d  e.  R
)
143116adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  w  C_  ( S  \  { X }
) )
144112adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( G `  d )  <_  ( # `
 w ) )
145 simprrr 742 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )
146145adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) )
147 simprll 739 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  c  e.  R
)
148 simprlr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  v  e.  ~P w )
149148elpwid 3768 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  v  C_  w
)
150 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  if ( c  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  c ) )  <_ 
( # `  v ) )
151 simprrr 742 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )
152 cnvresima 5318 . . . . . . . . . . . . 13  |-  ( `' ( K  |`  (
w C M ) ) " { c } )  =  ( ( `' K " { c } )  i^i  ( w C M ) )
153 inss1 3521 . . . . . . . . . . . . 13  |-  ( ( `' K " { c } )  i^i  (
w C M ) )  C_  ( `' K " { c } )
154152, 153eqsstri 3338 . . . . . . . . . . . 12  |-  ( `' ( K  |`  (
w C M ) ) " { c } )  C_  ( `' K " { c } )
155151, 154syl6ss 3320 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( v C M )  C_  ( `' K " { c } ) )
156133, 134, 135, 104, 136, 137, 1, 138, 139, 140, 141, 79, 142, 143, 144, 146, 147, 149, 150, 155ramub1lem1 13349 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
157156expr 599 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
158132, 157sylbid 207 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) )  ->  E. z  e.  ~P  S ( ( F `  c )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
159158anassrs 630 . . . . . . 7  |-  ( ( ( ( ph  /\  ( ( d  e.  R  /\  w  e. 
~P ( S  \  { X } ) )  /\  ( ( G `
 d )  <_ 
( # `  w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  c  e.  R )  /\  v  e.  ~P w )  -> 
( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) `  c
)  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
160159rexlimdva 2790 . . . . . 6  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  c  e.  R
)  ->  ( E. v  e.  ~P  w
( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
161160reximdva 2778 . . . . 5  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( E. c  e.  R  E. v  e.  ~P  w
( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
162122, 161mpd 15 . . . 4  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `  c )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { c } ) ) )
163162expr 599 . . 3  |-  ( (
ph  /\  ( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) ) )  ->  ( (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
164163rexlimdvva 2797 . 2  |-  ( ph  ->  ( E. d  e.  R  E. w  e. 
~P  ( S  \  { X } ) ( ( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
16581, 164mpd 15 1  |-  ( ph  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   ifcif 3699   ~Pcpw 3759   {csn 3774   class class class wbr 4172    e. cmpt 4226   `'ccnv 4836    |` cres 4839   "cima 4840   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   Fincfn 7068   CCcc 8944   1c1 8947    + caddc 8949    <_ cle 9077    - cmin 9247   NNcn 9956   NN0cn0 10177   #chash 11573   Ramsey cram 13322
This theorem is referenced by:  ramub1  13351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574  df-ram 13324
  Copyright terms: Public domain W3C validator