MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Structured version   Visualization version   Unicode version

Theorem ramub1lem2 14997
Description: Lemma for ramub1 14998. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m  |-  ( ph  ->  M  e.  NN )
ramub1.r  |-  ( ph  ->  R  e.  Fin )
ramub1.f  |-  ( ph  ->  F : R --> NN )
ramub1.g  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
ramub1.1  |-  ( ph  ->  G : R --> NN0 )
ramub1.2  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
ramub1.3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramub1.4  |-  ( ph  ->  S  e.  Fin )
ramub1.5  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
ramub1.6  |-  ( ph  ->  K : ( S C M ) --> R )
ramub1.x  |-  ( ph  ->  X  e.  S )
ramub1.h  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
Assertion
Ref Expression
ramub1lem2  |-  ( ph  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
Distinct variable groups:    x, u, c, y, z, F    a,
b, c, i, u, x, y, z, M    G, a, c, i, u, x, y, z    R, c, u, x, y, z    ph, c, u, x, y, z    S, a, c, i, u, x, y, z    C, c, u, x, y, z    H, c, u, x, y, z    K, c, u, x, y, z    X, a, c, i, u, x, y, z
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    S( b)    F( i, a, b)    G( b)    H( i, a, b)    K( i, a, b)    X( b)

Proof of Theorem ramub1lem2
Dummy variables  d 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramub1.m . . . 4  |-  ( ph  ->  M  e.  NN )
3 nnm1nn0 10918 . . . 4  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
42, 3syl 17 . . 3  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
5 ramub1.r . . 3  |-  ( ph  ->  R  e.  Fin )
6 ramub1.1 . . 3  |-  ( ph  ->  G : R --> NN0 )
7 ramub1.2 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
8 ramub1.4 . . . 4  |-  ( ph  ->  S  e.  Fin )
9 diffi 7808 . . . 4  |-  ( S  e.  Fin  ->  ( S  \  { X }
)  e.  Fin )
108, 9syl 17 . . 3  |-  ( ph  ->  ( S  \  { X } )  e.  Fin )
117nn0red 10933 . . . . 5  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  RR )
1211leidd 10187 . . . 4  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  <_  ( ( M  - 
1 ) Ramsey  G )
)
13 hashcl 12545 . . . . . . 7  |-  ( ( S  \  { X } )  e.  Fin  ->  ( # `  ( S  \  { X }
) )  e.  NN0 )
1410, 13syl 17 . . . . . 6  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  e.  NN0 )
1514nn0cnd 10934 . . . . 5  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  e.  CC )
167nn0cnd 10934 . . . . 5  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  CC )
17 1cnd 9664 . . . . 5  |-  ( ph  ->  1  e.  CC )
18 undif1 3844 . . . . . . . 8  |-  ( ( S  \  { X } )  u.  { X } )  =  ( S  u.  { X } )
19 ramub1.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  S )
2019snssd 4120 . . . . . . . . 9  |-  ( ph  ->  { X }  C_  S )
21 ssequn2 3609 . . . . . . . . 9  |-  ( { X }  C_  S  <->  ( S  u.  { X } )  =  S )
2220, 21sylib 200 . . . . . . . 8  |-  ( ph  ->  ( S  u.  { X } )  =  S )
2318, 22syl5eq 2499 . . . . . . 7  |-  ( ph  ->  ( ( S  \  { X } )  u. 
{ X } )  =  S )
2423fveq2d 5874 . . . . . 6  |-  ( ph  ->  ( # `  (
( S  \  { X } )  u.  { X } ) )  =  ( # `  S
) )
25 neldifsnd 4103 . . . . . . 7  |-  ( ph  ->  -.  X  e.  ( S  \  { X } ) )
26 hashunsng 12578 . . . . . . . 8  |-  ( X  e.  S  ->  (
( ( S  \  { X } )  e. 
Fin  /\  -.  X  e.  ( S  \  { X } ) )  -> 
( # `  ( ( S  \  { X } )  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) ) )
2719, 26syl 17 . . . . . . 7  |-  ( ph  ->  ( ( ( S 
\  { X }
)  e.  Fin  /\  -.  X  e.  ( S  \  { X }
) )  ->  ( # `
 ( ( S 
\  { X }
)  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) ) )
2810, 25, 27mp2and 686 . . . . . 6  |-  ( ph  ->  ( # `  (
( S  \  { X } )  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) )
29 ramub1.5 . . . . . 6  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
3024, 28, 293eqtr3d 2495 . . . . 5  |-  ( ph  ->  ( ( # `  ( S  \  { X }
) )  +  1 )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
3115, 16, 17, 30addcan2ad 9844 . . . 4  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  =  ( ( M  -  1 ) Ramsey  G ) )
3212, 31breqtrrd 4432 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  <_  ( # `  ( S  \  { X }
) ) )
33 ramub1.6 . . . . . 6  |-  ( ph  ->  K : ( S C M ) --> R )
3433adantr 467 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  K : ( S C M ) --> R )
351hashbcval 14966 . . . . . . . . . . . . . . 15  |-  ( ( ( S  \  { X } )  e.  Fin  /\  ( M  -  1 )  e.  NN0 )  ->  ( ( S  \  { X } ) C ( M  -  1 ) )  =  {
x  e.  ~P ( S  \  { X }
)  |  ( # `  x )  =  ( M  -  1 ) } )
3610, 4, 35syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S  \  { X } ) C ( M  -  1 ) )  =  {
x  e.  ~P ( S  \  { X }
)  |  ( # `  x )  =  ( M  -  1 ) } )
3736eleq2d 2516 . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  <->  u  e.  { x  e.  ~P ( S  \  { X } )  |  ( # `  x
)  =  ( M  -  1 ) } ) )
38 fveq2 5870 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  ( # `
 x )  =  ( # `  u
) )
3938eqeq1d 2455 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
( # `  x )  =  ( M  - 
1 )  <->  ( # `  u
)  =  ( M  -  1 ) ) )
4039elrab 3198 . . . . . . . . . . . . 13  |-  ( u  e.  { x  e. 
~P ( S  \  { X } )  |  ( # `  x
)  =  ( M  -  1 ) }  <-> 
( u  e.  ~P ( S  \  { X } )  /\  ( # `
 u )  =  ( M  -  1 ) ) )
4137, 40syl6bb 265 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  <->  ( u  e. 
~P ( S  \  { X } )  /\  ( # `  u )  =  ( M  - 
1 ) ) ) )
4241simprbda 629 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  e.  ~P ( S  \  { X }
) )
4342elpwid 3963 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  C_  ( S  \  { X } ) )
4443difss2d 3565 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  C_  S )
4520adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  { X }  C_  S
)
4644, 45unssd 3612 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  C_  S
)
47 vex 3050 . . . . . . . . . 10  |-  u  e. 
_V
48 snex 4644 . . . . . . . . . 10  |-  { X }  e.  _V
4947, 48unex 6594 . . . . . . . . 9  |-  ( u  u.  { X }
)  e.  _V
5049elpw 3959 . . . . . . . 8  |-  ( ( u  u.  { X } )  e.  ~P S 
<->  ( u  u.  { X } )  C_  S
)
5146, 50sylibr 216 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  ~P S )
5210adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( S  \  { X } )  e.  Fin )
53 ssfi 7797 . . . . . . . . . 10  |-  ( ( ( S  \  { X } )  e.  Fin  /\  u  C_  ( S  \  { X } ) )  ->  u  e.  Fin )
5452, 43, 53syl2anc 667 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  e.  Fin )
55 neldifsnd 4103 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  -.  X  e.  ( S  \  { X }
) )
5643, 55ssneldd 3437 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  -.  X  e.  u
)
5719adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  X  e.  S )
58 hashunsng 12578 . . . . . . . . . 10  |-  ( X  e.  S  ->  (
( u  e.  Fin  /\ 
-.  X  e.  u
)  ->  ( # `  (
u  u.  { X } ) )  =  ( ( # `  u
)  +  1 ) ) )
5957, 58syl 17 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( u  e. 
Fin  /\  -.  X  e.  u )  ->  ( # `
 ( u  u. 
{ X } ) )  =  ( (
# `  u )  +  1 ) ) )
6054, 56, 59mp2and 686 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  ( u  u.  { X }
) )  =  ( ( # `  u
)  +  1 ) )
6141simplbda 630 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  u )  =  ( M  - 
1 ) )
6261oveq1d 6310 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( # `  u
)  +  1 )  =  ( ( M  -  1 )  +  1 ) )
632nncnd 10632 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
64 ax-1cn 9602 . . . . . . . . . 10  |-  1  e.  CC
65 npcan 9889 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
6663, 64, 65sylancl 669 . . . . . . . . 9  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
6766adantr 467 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( M  - 
1 )  +  1 )  =  M )
6860, 62, 673eqtrd 2491 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  ( u  u.  { X }
) )  =  M )
69 fveq2 5870 . . . . . . . . 9  |-  ( x  =  ( u  u. 
{ X } )  ->  ( # `  x
)  =  ( # `  ( u  u.  { X } ) ) )
7069eqeq1d 2455 . . . . . . . 8  |-  ( x  =  ( u  u. 
{ X } )  ->  ( ( # `  x )  =  M  <-> 
( # `  ( u  u.  { X }
) )  =  M ) )
7170elrab 3198 . . . . . . 7  |-  ( ( u  u.  { X } )  e.  {
x  e.  ~P S  |  ( # `  x
)  =  M }  <->  ( ( u  u.  { X } )  e.  ~P S  /\  ( # `  (
u  u.  { X } ) )  =  M ) )
7251, 68, 71sylanbrc 671 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  {
x  e.  ~P S  |  ( # `  x
)  =  M }
)
732nnnn0d 10932 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
741hashbcval 14966 . . . . . . . 8  |-  ( ( S  e.  Fin  /\  M  e.  NN0 )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
758, 73, 74syl2anc 667 . . . . . . 7  |-  ( ph  ->  ( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7675adantr 467 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7772, 76eleqtrrd 2534 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  ( S C M ) )
7834, 77ffvelrnd 6028 . . . 4  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( K `  (
u  u.  { X } ) )  e.  R )
79 ramub1.h . . . 4  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
8078, 79fmptd 6051 . . 3  |-  ( ph  ->  H : ( ( S  \  { X } ) C ( M  -  1 ) ) --> R )
811, 4, 5, 6, 7, 10, 32, 80rami 14984 . 2  |-  ( ph  ->  E. d  e.  R  E. w  e.  ~P  ( S  \  { X } ) ( ( G `  d )  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) )
8273adantr 467 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  M  e.  NN0 )
835adantr 467 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  R  e.  Fin )
84 ramub1.f . . . . . . . . . . . 12  |-  ( ph  ->  F : R --> NN )
8584adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  F : R
--> NN )
86 simprll 773 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  d  e.  R )
8785, 86ffvelrnd 6028 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( F `  d )  e.  NN )
88 nnm1nn0 10918 . . . . . . . . . 10  |-  ( ( F `  d )  e.  NN  ->  (
( F `  d
)  -  1 )  e.  NN0 )
8987, 88syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( ( F `  d )  -  1 )  e. 
NN0 )
9089adantr 467 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( ( F `  d )  -  1 )  e. 
NN0 )
9185ffvelrnda 6027 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( F `  y )  e.  NN )
9291nnnn0d 10932 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( F `  y )  e.  NN0 )
9390, 92ifcld 3926 . . . . . . 7  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  if (
y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) )  e.  NN0 )
94 eqid 2453 . . . . . . 7  |-  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )  =  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )
9593, 94fmptd 6051 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) : R --> NN0 )
96 equequ2 1870 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
y  =  x  <->  y  =  d ) )
97 fveq2 5870 . . . . . . . . . . . . 13  |-  ( x  =  d  ->  ( F `  x )  =  ( F `  d ) )
9897oveq1d 6310 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
( F `  x
)  -  1 )  =  ( ( F `
 d )  - 
1 ) )
9996, 98ifbieq1d 3906 . . . . . . . . . . 11  |-  ( x  =  d  ->  if ( y  =  x ,  ( ( F `
 x )  - 
1 ) ,  ( F `  y ) )  =  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )
10099mpteq2dv 4493 . . . . . . . . . 10  |-  ( x  =  d  ->  (
y  e.  R  |->  if ( y  =  x ,  ( ( F `
 x )  - 
1 ) ,  ( F `  y ) ) )  =  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )
101100oveq2d 6311 . . . . . . . . 9  |-  ( x  =  d  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `  y
) ) ) )  =  ( M Ramsey  (
y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) ) )
102 ramub1.g . . . . . . . . 9  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
103 ovex 6323 . . . . . . . . 9  |-  ( M Ramsey 
( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) )  e.  _V
104101, 102, 103fvmpt 5953 . . . . . . . 8  |-  ( d  e.  R  ->  ( G `  d )  =  ( M Ramsey  (
y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) ) )
10586, 104syl 17 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  =  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  y ) ) ) ) )
1066adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  G : R
--> NN0 )
107106, 86ffvelrnd 6028 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  e.  NN0 )
108105, 107eqeltrrd 2532 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )  e. 
NN0 )
109 simprlr 774 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  e.  ~P ( S  \  { X } ) )
110 simprrl 775 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  <_  ( # `
 w ) )
111105, 110eqbrtrrd 4428 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )  <_ 
( # `  w ) )
11233adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  K :
( S C M ) --> R )
1138adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  S  e.  Fin )
114109elpwid 3963 . . . . . . . . 9  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  C_  ( S  \  { X }
) )
115114difss2d 3565 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  C_  S
)
1161hashbcss 14968 . . . . . . . 8  |-  ( ( S  e.  Fin  /\  w  C_  S  /\  M  e.  NN0 )  ->  (
w C M ) 
C_  ( S C M ) )
117113, 115, 82, 116syl3anc 1269 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( w C M )  C_  ( S C M ) )
118112, 117fssresd 5755 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( K  |`  ( w C M ) ) : ( w C M ) --> R )
1191, 82, 83, 95, 108, 109, 111, 118rami 14984 . . . . 5  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  E. c  e.  R  E. v  e.  ~P  w ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) )
120 equequ1 1869 . . . . . . . . . . . . . 14  |-  ( y  =  c  ->  (
y  =  d  <->  c  =  d ) )
121 fveq2 5870 . . . . . . . . . . . . . 14  |-  ( y  =  c  ->  ( F `  y )  =  ( F `  c ) )
122120, 121ifbieq2d 3908 . . . . . . . . . . . . 13  |-  ( y  =  c  ->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) )  =  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 c ) ) )
123 ovex 6323 . . . . . . . . . . . . . 14  |-  ( ( F `  d )  -  1 )  e. 
_V
124 fvex 5880 . . . . . . . . . . . . . 14  |-  ( F `
 c )  e. 
_V
125123, 124ifex 3951 . . . . . . . . . . . . 13  |-  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 c ) )  e.  _V
126122, 94, 125fvmpt 5953 . . . . . . . . . . . 12  |-  ( c  e.  R  ->  (
( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  =  if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) ) )
127126ad2antrl 735 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  =  if ( c  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  c ) ) )
128127breq1d 4415 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) `  c
)  <_  ( # `  v
)  <->  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v ) ) )
129128anbi1d 712 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) )  <->  ( if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) ) ) )
1302ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  M  e.  NN )
1315ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  R  e.  Fin )
13284ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  F : R --> NN )
1336ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  G : R --> NN0 )
1347ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( ( M  -  1 ) Ramsey  G
)  e.  NN0 )
1358ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  S  e.  Fin )
13629ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
13733ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  K : ( S C M ) --> R )
13819ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  X  e.  S
)
13986adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  d  e.  R
)
140114adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  w  C_  ( S  \  { X }
) )
141110adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( G `  d )  <_  ( # `
 w ) )
142 simprrr 776 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )
143142adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) )
144 simprll 773 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  c  e.  R
)
145 simprlr 774 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  v  e.  ~P w )
146145elpwid 3963 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  v  C_  w
)
147 simprrl 775 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  if ( c  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  c ) )  <_ 
( # `  v ) )
148 simprrr 776 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )
149 cnvresima 5327 . . . . . . . . . . . . 13  |-  ( `' ( K  |`  (
w C M ) ) " { c } )  =  ( ( `' K " { c } )  i^i  ( w C M ) )
150 inss1 3654 . . . . . . . . . . . . 13  |-  ( ( `' K " { c } )  i^i  (
w C M ) )  C_  ( `' K " { c } )
151149, 150eqsstri 3464 . . . . . . . . . . . 12  |-  ( `' ( K  |`  (
w C M ) ) " { c } )  C_  ( `' K " { c } )
152148, 151syl6ss 3446 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( v C M )  C_  ( `' K " { c } ) )
153130, 131, 132, 102, 133, 134, 1, 135, 136, 137, 138, 79, 139, 140, 141, 143, 144, 146, 147, 152ramub1lem1 14996 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
154153expr 620 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
155129, 154sylbid 219 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) )  ->  E. z  e.  ~P  S ( ( F `  c )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
156155anassrs 654 . . . . . . 7  |-  ( ( ( ( ph  /\  ( ( d  e.  R  /\  w  e. 
~P ( S  \  { X } ) )  /\  ( ( G `
 d )  <_ 
( # `  w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  c  e.  R )  /\  v  e.  ~P w )  -> 
( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) `  c
)  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
157156rexlimdva 2881 . . . . . 6  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  c  e.  R
)  ->  ( E. v  e.  ~P  w
( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
158157reximdva 2864 . . . . 5  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( E. c  e.  R  E. v  e.  ~P  w
( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
159119, 158mpd 15 . . . 4  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `  c )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { c } ) ) )
160159expr 620 . . 3  |-  ( (
ph  /\  ( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) ) )  ->  ( (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
161160rexlimdvva 2888 . 2  |-  ( ph  ->  ( E. d  e.  R  E. w  e. 
~P  ( S  \  { X } ) ( ( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
16281, 161mpd 15 1  |-  ( ph  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   E.wrex 2740   {crab 2743   _Vcvv 3047    \ cdif 3403    u. cun 3404    i^i cin 3405    C_ wss 3406   ifcif 3883   ~Pcpw 3953   {csn 3970   class class class wbr 4405    |-> cmpt 4464   `'ccnv 4836    |` cres 4839   "cima 4840   -->wf 5581   ` cfv 5585  (class class class)co 6295    |-> cmpt2 6297   Fincfn 7574   CCcc 9542   1c1 9545    + caddc 9547    <_ cle 9681    - cmin 9865   NNcn 10616   NN0cn0 10876   #chash 12522   Ramsey cram 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-inf 7962  df-card 8378  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-hash 12523  df-ram 14964
This theorem is referenced by:  ramub1  14998
  Copyright terms: Public domain W3C validator