MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem2 Structured version   Unicode version

Theorem ramub1lem2 14088
Description: Lemma for ramub1 14089. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m  |-  ( ph  ->  M  e.  NN )
ramub1.r  |-  ( ph  ->  R  e.  Fin )
ramub1.f  |-  ( ph  ->  F : R --> NN )
ramub1.g  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
ramub1.1  |-  ( ph  ->  G : R --> NN0 )
ramub1.2  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
ramub1.3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramub1.4  |-  ( ph  ->  S  e.  Fin )
ramub1.5  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
ramub1.6  |-  ( ph  ->  K : ( S C M ) --> R )
ramub1.x  |-  ( ph  ->  X  e.  S )
ramub1.h  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
Assertion
Ref Expression
ramub1lem2  |-  ( ph  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
Distinct variable groups:    x, u, c, y, z, F    a,
b, c, i, u, x, y, z, M    G, a, c, i, u, x, y, z    R, c, u, x, y, z    ph, c, u, x, y, z    S, a, c, i, u, x, y, z    C, c, u, x, y, z    H, c, u, x, y, z    K, c, u, x, y, z    X, a, c, i, u, x, y, z
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    S( b)    F( i, a, b)    G( b)    H( i, a, b)    K( i, a, b)    X( b)

Proof of Theorem ramub1lem2
Dummy variables  d 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ramub1.3 . . 3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramub1.m . . . 4  |-  ( ph  ->  M  e.  NN )
3 nnm1nn0 10621 . . . 4  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
42, 3syl 16 . . 3  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
5 ramub1.r . . 3  |-  ( ph  ->  R  e.  Fin )
6 ramub1.1 . . 3  |-  ( ph  ->  G : R --> NN0 )
7 ramub1.2 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
8 ramub1.4 . . . 4  |-  ( ph  ->  S  e.  Fin )
9 diffi 7543 . . . 4  |-  ( S  e.  Fin  ->  ( S  \  { X }
)  e.  Fin )
108, 9syl 16 . . 3  |-  ( ph  ->  ( S  \  { X } )  e.  Fin )
117nn0red 10637 . . . . 5  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  RR )
1211leidd 9906 . . . 4  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  <_  ( ( M  - 
1 ) Ramsey  G )
)
13 hashcl 12126 . . . . . . 7  |-  ( ( S  \  { X } )  e.  Fin  ->  ( # `  ( S  \  { X }
) )  e.  NN0 )
1410, 13syl 16 . . . . . 6  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  e.  NN0 )
1514nn0cnd 10638 . . . . 5  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  e.  CC )
167nn0cnd 10638 . . . . 5  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  CC )
17 ax-1cn 9340 . . . . . 6  |-  1  e.  CC
1817a1i 11 . . . . 5  |-  ( ph  ->  1  e.  CC )
19 undif1 3754 . . . . . . . 8  |-  ( ( S  \  { X } )  u.  { X } )  =  ( S  u.  { X } )
20 ramub1.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  S )
2120snssd 4018 . . . . . . . . 9  |-  ( ph  ->  { X }  C_  S )
22 ssequn2 3529 . . . . . . . . 9  |-  ( { X }  C_  S  <->  ( S  u.  { X } )  =  S )
2321, 22sylib 196 . . . . . . . 8  |-  ( ph  ->  ( S  u.  { X } )  =  S )
2419, 23syl5eq 2487 . . . . . . 7  |-  ( ph  ->  ( ( S  \  { X } )  u. 
{ X } )  =  S )
2524fveq2d 5695 . . . . . 6  |-  ( ph  ->  ( # `  (
( S  \  { X } )  u.  { X } ) )  =  ( # `  S
) )
26 neldifsnd 4003 . . . . . . 7  |-  ( ph  ->  -.  X  e.  ( S  \  { X } ) )
27 hashunsng 12154 . . . . . . . 8  |-  ( X  e.  S  ->  (
( ( S  \  { X } )  e. 
Fin  /\  -.  X  e.  ( S  \  { X } ) )  -> 
( # `  ( ( S  \  { X } )  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) ) )
2820, 27syl 16 . . . . . . 7  |-  ( ph  ->  ( ( ( S 
\  { X }
)  e.  Fin  /\  -.  X  e.  ( S  \  { X }
) )  ->  ( # `
 ( ( S 
\  { X }
)  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) ) )
2910, 26, 28mp2and 679 . . . . . 6  |-  ( ph  ->  ( # `  (
( S  \  { X } )  u.  { X } ) )  =  ( ( # `  ( S  \  { X }
) )  +  1 ) )
30 ramub1.5 . . . . . 6  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
3125, 29, 303eqtr3d 2483 . . . . 5  |-  ( ph  ->  ( ( # `  ( S  \  { X }
) )  +  1 )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
3215, 16, 18, 31addcan2ad 9575 . . . 4  |-  ( ph  ->  ( # `  ( S  \  { X }
) )  =  ( ( M  -  1 ) Ramsey  G ) )
3312, 32breqtrrd 4318 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  <_  ( # `  ( S  \  { X }
) ) )
34 ramub1.6 . . . . . 6  |-  ( ph  ->  K : ( S C M ) --> R )
3534adantr 465 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  K : ( S C M ) --> R )
361hashbcval 14063 . . . . . . . . . . . . . . 15  |-  ( ( ( S  \  { X } )  e.  Fin  /\  ( M  -  1 )  e.  NN0 )  ->  ( ( S  \  { X } ) C ( M  -  1 ) )  =  {
x  e.  ~P ( S  \  { X }
)  |  ( # `  x )  =  ( M  -  1 ) } )
3710, 4, 36syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S  \  { X } ) C ( M  -  1 ) )  =  {
x  e.  ~P ( S  \  { X }
)  |  ( # `  x )  =  ( M  -  1 ) } )
3837eleq2d 2510 . . . . . . . . . . . . 13  |-  ( ph  ->  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  <->  u  e.  { x  e.  ~P ( S  \  { X } )  |  ( # `  x
)  =  ( M  -  1 ) } ) )
39 fveq2 5691 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  ( # `
 x )  =  ( # `  u
) )
4039eqeq1d 2451 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
( # `  x )  =  ( M  - 
1 )  <->  ( # `  u
)  =  ( M  -  1 ) ) )
4140elrab 3117 . . . . . . . . . . . . 13  |-  ( u  e.  { x  e. 
~P ( S  \  { X } )  |  ( # `  x
)  =  ( M  -  1 ) }  <-> 
( u  e.  ~P ( S  \  { X } )  /\  ( # `
 u )  =  ( M  -  1 ) ) )
4238, 41syl6bb 261 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  <->  ( u  e. 
~P ( S  \  { X } )  /\  ( # `  u )  =  ( M  - 
1 ) ) ) )
4342simprbda 623 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  e.  ~P ( S  \  { X }
) )
4443elpwid 3870 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  C_  ( S  \  { X } ) )
4544difss2d 3486 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  C_  S )
4621adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  { X }  C_  S
)
4745, 46unssd 3532 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  C_  S
)
48 vex 2975 . . . . . . . . . 10  |-  u  e. 
_V
49 snex 4533 . . . . . . . . . 10  |-  { X }  e.  _V
5048, 49unex 6378 . . . . . . . . 9  |-  ( u  u.  { X }
)  e.  _V
5150elpw 3866 . . . . . . . 8  |-  ( ( u  u.  { X } )  e.  ~P S 
<->  ( u  u.  { X } )  C_  S
)
5247, 51sylibr 212 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  ~P S )
5310adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( S  \  { X } )  e.  Fin )
54 ssfi 7533 . . . . . . . . . 10  |-  ( ( ( S  \  { X } )  e.  Fin  /\  u  C_  ( S  \  { X } ) )  ->  u  e.  Fin )
5553, 44, 54syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  u  e.  Fin )
56 neldifsnd 4003 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  -.  X  e.  ( S  \  { X }
) )
5744, 56ssneldd 3359 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  -.  X  e.  u
)
5820adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  ->  X  e.  S )
59 hashunsng 12154 . . . . . . . . . 10  |-  ( X  e.  S  ->  (
( u  e.  Fin  /\ 
-.  X  e.  u
)  ->  ( # `  (
u  u.  { X } ) )  =  ( ( # `  u
)  +  1 ) ) )
6058, 59syl 16 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( u  e. 
Fin  /\  -.  X  e.  u )  ->  ( # `
 ( u  u. 
{ X } ) )  =  ( (
# `  u )  +  1 ) ) )
6155, 57, 60mp2and 679 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  ( u  u.  { X }
) )  =  ( ( # `  u
)  +  1 ) )
6242simplbda 624 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  u )  =  ( M  - 
1 ) )
6362oveq1d 6106 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( # `  u
)  +  1 )  =  ( ( M  -  1 )  +  1 ) )
642nncnd 10338 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
65 npcan 9619 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
6664, 17, 65sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
6766adantr 465 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( ( M  - 
1 )  +  1 )  =  M )
6861, 63, 673eqtrd 2479 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( # `  ( u  u.  { X }
) )  =  M )
69 fveq2 5691 . . . . . . . . 9  |-  ( x  =  ( u  u. 
{ X } )  ->  ( # `  x
)  =  ( # `  ( u  u.  { X } ) ) )
7069eqeq1d 2451 . . . . . . . 8  |-  ( x  =  ( u  u. 
{ X } )  ->  ( ( # `  x )  =  M  <-> 
( # `  ( u  u.  { X }
) )  =  M ) )
7170elrab 3117 . . . . . . 7  |-  ( ( u  u.  { X } )  e.  {
x  e.  ~P S  |  ( # `  x
)  =  M }  <->  ( ( u  u.  { X } )  e.  ~P S  /\  ( # `  (
u  u.  { X } ) )  =  M ) )
7252, 68, 71sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  {
x  e.  ~P S  |  ( # `  x
)  =  M }
)
732nnnn0d 10636 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
741hashbcval 14063 . . . . . . . 8  |-  ( ( S  e.  Fin  /\  M  e.  NN0 )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
758, 73, 74syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7675adantr 465 . . . . . 6  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7772, 76eleqtrrd 2520 . . . . 5  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( u  u.  { X } )  e.  ( S C M ) )
7835, 77ffvelrnd 5844 . . . 4  |-  ( (
ph  /\  u  e.  ( ( S  \  { X } ) C ( M  -  1 ) ) )  -> 
( K `  (
u  u.  { X } ) )  e.  R )
79 ramub1.h . . . 4  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
8078, 79fmptd 5867 . . 3  |-  ( ph  ->  H : ( ( S  \  { X } ) C ( M  -  1 ) ) --> R )
811, 4, 5, 6, 7, 10, 33, 80rami 14076 . 2  |-  ( ph  ->  E. d  e.  R  E. w  e.  ~P  ( S  \  { X } ) ( ( G `  d )  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) )
8273adantr 465 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  M  e.  NN0 )
835adantr 465 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  R  e.  Fin )
84 ramub1.f . . . . . . . . . . . 12  |-  ( ph  ->  F : R --> NN )
8584adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  F : R
--> NN )
86 simprll 761 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  d  e.  R )
8785, 86ffvelrnd 5844 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( F `  d )  e.  NN )
88 nnm1nn0 10621 . . . . . . . . . 10  |-  ( ( F `  d )  e.  NN  ->  (
( F `  d
)  -  1 )  e.  NN0 )
8987, 88syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( ( F `  d )  -  1 )  e. 
NN0 )
9089adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( ( F `  d )  -  1 )  e. 
NN0 )
9185ffvelrnda 5843 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( F `  y )  e.  NN )
9291nnnn0d 10636 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  ( F `  y )  e.  NN0 )
93 ifcl 3831 . . . . . . . 8  |-  ( ( ( ( F `  d )  -  1 )  e.  NN0  /\  ( F `  y )  e.  NN0 )  ->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) )  e.  NN0 )
9490, 92, 93syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  y  e.  R
)  ->  if (
y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) )  e.  NN0 )
95 eqid 2443 . . . . . . 7  |-  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )  =  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )
9694, 95fmptd 5867 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) : R --> NN0 )
97 equequ2 1737 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
y  =  x  <->  y  =  d ) )
98 fveq2 5691 . . . . . . . . . . . . 13  |-  ( x  =  d  ->  ( F `  x )  =  ( F `  d ) )
9998oveq1d 6106 . . . . . . . . . . . 12  |-  ( x  =  d  ->  (
( F `  x
)  -  1 )  =  ( ( F `
 d )  - 
1 ) )
10097, 99ifbieq1d 3812 . . . . . . . . . . 11  |-  ( x  =  d  ->  if ( y  =  x ,  ( ( F `
 x )  - 
1 ) ,  ( F `  y ) )  =  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) )
101100mpteq2dv 4379 . . . . . . . . . 10  |-  ( x  =  d  ->  (
y  e.  R  |->  if ( y  =  x ,  ( ( F `
 x )  - 
1 ) ,  ( F `  y ) ) )  =  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )
102101oveq2d 6107 . . . . . . . . 9  |-  ( x  =  d  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `  y
) ) ) )  =  ( M Ramsey  (
y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) ) )
103 ramub1.g . . . . . . . . 9  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
104 ovex 6116 . . . . . . . . 9  |-  ( M Ramsey 
( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) )  e.  _V
105102, 103, 104fvmpt 5774 . . . . . . . 8  |-  ( d  e.  R  ->  ( G `  d )  =  ( M Ramsey  (
y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) ) )
10686, 105syl 16 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  =  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  y ) ) ) ) )
1076adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  G : R
--> NN0 )
108107, 86ffvelrnd 5844 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  e.  NN0 )
109106, 108eqeltrrd 2518 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )  e. 
NN0 )
110 simprlr 762 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  e.  ~P ( S  \  { X } ) )
111 simprrl 763 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( G `  d )  <_  ( # `
 w ) )
112106, 111eqbrtrrd 4314 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) )  <_ 
( # `  w ) )
11334adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  K :
( S C M ) --> R )
1148adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  S  e.  Fin )
115110elpwid 3870 . . . . . . . . 9  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  C_  ( S  \  { X }
) )
116115difss2d 3486 . . . . . . . 8  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  w  C_  S
)
1171hashbcss 14065 . . . . . . . 8  |-  ( ( S  e.  Fin  /\  w  C_  S  /\  M  e.  NN0 )  ->  (
w C M ) 
C_  ( S C M ) )
118114, 116, 82, 117syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( w C M )  C_  ( S C M ) )
119 fssres 5578 . . . . . . 7  |-  ( ( K : ( S C M ) --> R  /\  ( w C M )  C_  ( S C M ) )  ->  ( K  |`  ( w C M ) ) : ( w C M ) --> R )
120113, 118, 119syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( K  |`  ( w C M ) ) : ( w C M ) --> R )
1211, 82, 83, 96, 109, 110, 112, 120rami 14076 . . . . 5  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  E. c  e.  R  E. v  e.  ~P  w ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) )
122 equequ1 1736 . . . . . . . . . . . . . 14  |-  ( y  =  c  ->  (
y  =  d  <->  c  =  d ) )
123 fveq2 5691 . . . . . . . . . . . . . 14  |-  ( y  =  c  ->  ( F `  y )  =  ( F `  c ) )
124122, 123ifbieq2d 3814 . . . . . . . . . . . . 13  |-  ( y  =  c  ->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) )  =  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 c ) ) )
125 ovex 6116 . . . . . . . . . . . . . 14  |-  ( ( F `  d )  -  1 )  e. 
_V
126 fvex 5701 . . . . . . . . . . . . . 14  |-  ( F `
 c )  e. 
_V
127125, 126ifex 3858 . . . . . . . . . . . . 13  |-  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 c ) )  e.  _V
128124, 95, 127fvmpt 5774 . . . . . . . . . . . 12  |-  ( c  e.  R  ->  (
( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  =  if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) ) )
129128ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  =  if ( c  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  c ) ) )
130129breq1d 4302 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) `  c
)  <_  ( # `  v
)  <->  if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v ) ) )
131130anbi1d 704 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) )  <->  ( if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) ) ) )
1322ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  M  e.  NN )
1335ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  R  e.  Fin )
13484ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  F : R --> NN )
1356ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  G : R --> NN0 )
1367ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( ( M  -  1 ) Ramsey  G
)  e.  NN0 )
1378ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  S  e.  Fin )
13830ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
13934ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  K : ( S C M ) --> R )
14020ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  X  e.  S
)
14186adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  d  e.  R
)
142115adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  w  C_  ( S  \  { X }
) )
143111adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( G `  d )  <_  ( # `
 w ) )
144 simprrr 764 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )
145144adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) )
146 simprll 761 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  c  e.  R
)
147 simprlr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  v  e.  ~P w )
148147elpwid 3870 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  v  C_  w
)
149 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  if ( c  =  d ,  ( ( F `  d
)  -  1 ) ,  ( F `  c ) )  <_ 
( # `  v ) )
150 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )
151 cnvresima 5327 . . . . . . . . . . . . 13  |-  ( `' ( K  |`  (
w C M ) ) " { c } )  =  ( ( `' K " { c } )  i^i  ( w C M ) )
152 inss1 3570 . . . . . . . . . . . . 13  |-  ( ( `' K " { c } )  i^i  (
w C M ) )  C_  ( `' K " { c } )
153151, 152eqsstri 3386 . . . . . . . . . . . 12  |-  ( `' ( K  |`  (
w C M ) ) " { c } )  C_  ( `' K " { c } )
154150, 153syl6ss 3368 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  ( v C M )  C_  ( `' K " { c } ) )
155132, 133, 134, 103, 135, 136, 1, 137, 138, 139, 140, 79, 141, 142, 143, 145, 146, 148, 149, 154ramub1lem1 14087 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( ( c  e.  R  /\  v  e.  ~P w )  /\  ( if ( c  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  c
) )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) ) ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
156155expr 615 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( if ( c  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  c ) )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
157131, 156sylbid 215 . . . . . . . 8  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  ( c  e.  R  /\  v  e. 
~P w ) )  ->  ( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `  y
) ) ) `  c )  <_  ( # `
 v )  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) )
" { c } ) )  ->  E. z  e.  ~P  S ( ( F `  c )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
158157anassrs 648 . . . . . . 7  |-  ( ( ( ( ph  /\  ( ( d  e.  R  /\  w  e. 
~P ( S  \  { X } ) )  /\  ( ( G `
 d )  <_ 
( # `  w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  c  e.  R )  /\  v  e.  ~P w )  -> 
( ( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `
 d )  - 
1 ) ,  ( F `  y ) ) ) `  c
)  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
159158rexlimdva 2841 . . . . . 6  |-  ( ( ( ph  /\  (
( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) )  /\  ( ( G `  d )  <_  ( # `
 w )  /\  ( w C ( M  -  1 ) )  C_  ( `' H " { d } ) ) ) )  /\  c  e.  R
)  ->  ( E. v  e.  ~P  w
( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
160159reximdva 2828 . . . . 5  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  ( E. c  e.  R  E. v  e.  ~P  w
( ( ( y  e.  R  |->  if ( y  =  d ,  ( ( F `  d )  -  1 ) ,  ( F `
 y ) ) ) `  c )  <_  ( # `  v
)  /\  ( v C M )  C_  ( `' ( K  |`  ( w C M ) ) " {
c } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
161121, 160mpd 15 . . . 4  |-  ( (
ph  /\  ( (
d  e.  R  /\  w  e.  ~P ( S  \  { X }
) )  /\  (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) ) ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `  c )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { c } ) ) )
162161expr 615 . . 3  |-  ( (
ph  /\  ( d  e.  R  /\  w  e.  ~P ( S  \  { X } ) ) )  ->  ( (
( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
163162rexlimdvva 2848 . 2  |-  ( ph  ->  ( E. d  e.  R  E. w  e. 
~P  ( S  \  { X } ) ( ( G `  d
)  <_  ( # `  w
)  /\  ( w C ( M  - 
1 ) )  C_  ( `' H " { d } ) )  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) ) )
16481, 163mpd 15 1  |-  ( ph  ->  E. c  e.  R  E. z  e.  ~P  S ( ( F `
 c )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2716   {crab 2719   _Vcvv 2972    \ cdif 3325    u. cun 3326    i^i cin 3327    C_ wss 3328   ifcif 3791   ~Pcpw 3860   {csn 3877   class class class wbr 4292    e. cmpt 4350   `'ccnv 4839    |` cres 4842   "cima 4843   -->wf 5414   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   Fincfn 7310   CCcc 9280   1c1 9283    + caddc 9285    <_ cle 9419    - cmin 9595   NNcn 10322   NN0cn0 10579   #chash 12103   Ramsey cram 14060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-hash 12104  df-ram 14062
This theorem is referenced by:  ramub1  14089
  Copyright terms: Public domain W3C validator