MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtlecl Structured version   Unicode version

Theorem ramtlecl 14602
Description: The set  T of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
ramtlecl.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  ph ) }
Assertion
Ref Expression
ramtlecl  |-  ( M  e.  T  ->  ( ZZ>=
`  M )  C_  T )
Distinct variable groups:    n, s, M    ph, n    T, n, s
Allowed substitution hint:    ph( s)

Proof of Theorem ramtlecl
StepHypRef Expression
1 breq1 4442 . . . . . . . 8  |-  ( n  =  M  ->  (
n  <_  ( # `  s
)  <->  M  <_  ( # `  s ) ) )
21imbi1d 315 . . . . . . 7  |-  ( n  =  M  ->  (
( n  <_  ( # `
 s )  ->  ph )  <->  ( M  <_ 
( # `  s )  ->  ph ) ) )
32albidv 1718 . . . . . 6  |-  ( n  =  M  ->  ( A. s ( n  <_ 
( # `  s )  ->  ph )  <->  A. s
( M  <_  ( # `
 s )  ->  ph ) ) )
4 ramtlecl.t . . . . . 6  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  ph ) }
53, 4elrab2 3256 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  NN0  /\  A. s
( M  <_  ( # `
 s )  ->  ph ) ) )
65simplbi 458 . . . 4  |-  ( M  e.  T  ->  M  e.  NN0 )
7 eluznn0 11152 . . . . . 6  |-  ( ( M  e.  NN0  /\  n  e.  ( ZZ>= `  M ) )  ->  n  e.  NN0 )
87ex 432 . . . . 5  |-  ( M  e.  NN0  ->  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  NN0 ) )
98ssrdv 3495 . . . 4  |-  ( M  e.  NN0  ->  ( ZZ>= `  M )  C_  NN0 )
106, 9syl 16 . . 3  |-  ( M  e.  T  ->  ( ZZ>=
`  M )  C_  NN0 )
115simprbi 462 . . . . 5  |-  ( M  e.  T  ->  A. s
( M  <_  ( # `
 s )  ->  ph ) )
12 eluzle 11094 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  M  <_  n )
1312adantl 464 . . . . . . . . 9  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  ->  M  <_  n )
14 nn0ssre 10795 . . . . . . . . . . . 12  |-  NN0  C_  RR
15 ressxr 9626 . . . . . . . . . . . 12  |-  RR  C_  RR*
1614, 15sstri 3498 . . . . . . . . . . 11  |-  NN0  C_  RR*
176adantr 463 . . . . . . . . . . 11  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  ->  M  e.  NN0 )
1816, 17sseldi 3487 . . . . . . . . . 10  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  ->  M  e.  RR* )
196, 7sylan 469 . . . . . . . . . . 11  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  ->  n  e.  NN0 )
2016, 19sseldi 3487 . . . . . . . . . 10  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  ->  n  e.  RR* )
21 vex 3109 . . . . . . . . . . 11  |-  s  e. 
_V
22 hashxrcl 12411 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( # `
 s )  e. 
RR* )
2321, 22mp1i 12 . . . . . . . . . 10  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  -> 
( # `  s )  e.  RR* )
24 xrletr 11364 . . . . . . . . . 10  |-  ( ( M  e.  RR*  /\  n  e.  RR*  /\  ( # `  s )  e.  RR* )  ->  ( ( M  <_  n  /\  n  <_  ( # `  s
) )  ->  M  <_  ( # `  s
) ) )
2518, 20, 23, 24syl3anc 1226 . . . . . . . . 9  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  -> 
( ( M  <_  n  /\  n  <_  ( # `
 s ) )  ->  M  <_  ( # `
 s ) ) )
2613, 25mpand 673 . . . . . . . 8  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  -> 
( n  <_  ( # `
 s )  ->  M  <_  ( # `  s
) ) )
2726imim1d 75 . . . . . . 7  |-  ( ( M  e.  T  /\  n  e.  ( ZZ>= `  M ) )  -> 
( ( M  <_ 
( # `  s )  ->  ph )  ->  (
n  <_  ( # `  s
)  ->  ph ) ) )
2827ralrimdva 2872 . . . . . 6  |-  ( M  e.  T  ->  (
( M  <_  ( # `
 s )  ->  ph )  ->  A. n  e.  ( ZZ>= `  M )
( n  <_  ( # `
 s )  ->  ph ) ) )
2928alimdv 1714 . . . . 5  |-  ( M  e.  T  ->  ( A. s ( M  <_ 
( # `  s )  ->  ph )  ->  A. s A. n  e.  ( ZZ>=
`  M ) ( n  <_  ( # `  s
)  ->  ph ) ) )
3011, 29mpd 15 . . . 4  |-  ( M  e.  T  ->  A. s A. n  e.  ( ZZ>=
`  M ) ( n  <_  ( # `  s
)  ->  ph ) )
31 ralcom4 3125 . . . 4  |-  ( A. n  e.  ( ZZ>= `  M ) A. s
( n  <_  ( # `
 s )  ->  ph )  <->  A. s A. n  e.  ( ZZ>= `  M )
( n  <_  ( # `
 s )  ->  ph ) )
3230, 31sylibr 212 . . 3  |-  ( M  e.  T  ->  A. n  e.  ( ZZ>= `  M ) A. s ( n  <_ 
( # `  s )  ->  ph ) )
33 ssrab 3564 . . 3  |-  ( (
ZZ>= `  M )  C_  { n  e.  NN0  |  A. s ( n  <_ 
( # `  s )  ->  ph ) }  <->  ( ( ZZ>=
`  M )  C_  NN0 
/\  A. n  e.  (
ZZ>= `  M ) A. s ( n  <_ 
( # `  s )  ->  ph ) ) )
3410, 32, 33sylanbrc 662 . 2  |-  ( M  e.  T  ->  ( ZZ>=
`  M )  C_  { n  e.  NN0  |  A. s ( n  <_ 
( # `  s )  ->  ph ) } )
3534, 4syl6sseqr 3536 1  |-  ( M  e.  T  ->  ( ZZ>=
`  M )  C_  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823   A.wral 2804   {crab 2808   _Vcvv 3106    C_ wss 3461   class class class wbr 4439   ` cfv 5570   RRcr 9480   RR*cxr 9616    <_ cle 9618   NN0cn0 10791   ZZ>=cuz 11082   #chash 12387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-hash 12388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator