MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtcl2 Structured version   Unicode version

Theorem ramtcl2 14738
Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramtcl2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  T  =/=  (/) ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramtcl2
StepHypRef Expression
1 ramval.c . . . . 5  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramval.t . . . . 5  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
31, 2ramcl2lem 14736 . . . 4  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
43eleq1d 2471 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  e.  NN0 )
)
5 pnfnre 9665 . . . . . 6  |- +oo  e/  RR
65neli 2739 . . . . 5  |-  -. +oo  e.  RR
7 iftrue 3891 . . . . . . 7  |-  ( T  =  (/)  ->  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  = +oo )
87eleq1d 2471 . . . . . 6  |-  ( T  =  (/)  ->  ( if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  e. 
NN0 
<-> +oo  e.  NN0 )
)
9 nn0re 10845 . . . . . 6  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
108, 9syl6bi 228 . . . . 5  |-  ( T  =  (/)  ->  ( if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  e. 
NN0  -> +oo  e.  RR ) )
116, 10mtoi 178 . . . 4  |-  ( T  =  (/)  ->  -.  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  e.  NN0 )
1211necon2ai 2638 . . 3  |-  ( if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  e. 
NN0  ->  T  =/=  (/) )
134, 12syl6bi 228 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  ->  T  =/=  (/) ) )
141, 2ramtcl 14737 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  T  <->  T  =/=  (/) ) )
15 ssrab2 3524 . . . . 5  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } 
C_  NN0
162, 15eqsstri 3472 . . . 4  |-  T  C_  NN0
1716sseli 3438 . . 3  |-  ( ( M Ramsey  F )  e.  T  ->  ( M Ramsey  F )  e.  NN0 )
1814, 17syl6bir 229 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( T  =/=  (/)  ->  ( M Ramsey  F )  e.  NN0 ) )
1913, 18impbid 190 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  T  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974   A.wal 1403    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   {crab 2758   _Vcvv 3059    C_ wss 3414   (/)c0 3738   ifcif 3885   ~Pcpw 3955   {csn 3972   class class class wbr 4395   `'ccnv 4822   "cima 4826   -->wf 5565   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280    ^m cmap 7457   supcsup 7934   RRcr 9521   +oocpnf 9655    < clt 9658    <_ cle 9659   NN0cn0 10836   #chash 12452   Ramsey cram 14726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-ram 14728
This theorem is referenced by:  rami  14742  ramcl2  14743  ramsey  14757
  Copyright terms: Public domain W3C validator