MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtcl Structured version   Unicode version

Theorem ramtcl 14404
Description: The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramtcl  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  T  <->  T  =/=  (/) ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramtcl
StepHypRef Expression
1 ne0i 3796 . 2  |-  ( ( M Ramsey  F )  e.  T  ->  T  =/=  (/) )
2 ramval.c . . . . . 6  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
3 ramval.t . . . . . 6  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
42, 3ramcl2lem 14403 . . . . 5  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
5 ifnefalse 3957 . . . . 5  |-  ( T  =/=  (/)  ->  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  =  sup ( T ,  RR ,  `'  <  ) )
64, 5sylan9eq 2528 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR ,  `'  <  ) )
7 ssrab2 3590 . . . . . . . 8  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } 
C_  NN0
83, 7eqsstri 3539 . . . . . . 7  |-  T  C_  NN0
9 nn0uz 11128 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
108, 9sseqtri 3541 . . . . . 6  |-  T  C_  ( ZZ>= `  0 )
1110a1i 11 . . . . 5  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  T  C_  ( ZZ>= ` 
0 ) )
12 infmssuzcl 11177 . . . . 5  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
1311, 12sylan 471 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
146, 13eqeltrd 2555 . . 3  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  e.  T )
1514ex 434 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( T  =/=  (/)  ->  ( M Ramsey  F )  e.  T
) )
161, 15impbid2 204 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  T  <->  T  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821   _Vcvv 3118    C_ wss 3481   (/)c0 3790   ifcif 3945   ~Pcpw 4016   {csn 4033   class class class wbr 4453   `'ccnv 5004   "cima 5008   -->wf 5590   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297    ^m cmap 7432   supcsup 7912   RRcr 9503   0cc0 9504   +oocpnf 9637    < clt 9640    <_ cle 9641   NN0cn0 10807   ZZ>=cuz 11094   #chash 12385   Ramsey cram 14393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-ram 14395
This theorem is referenced by:  ramtcl2  14405  rami  14409
  Copyright terms: Public domain W3C validator