MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rami Structured version   Visualization version   Unicode version

Theorem rami 15051
Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
rami.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
rami.m  |-  ( ph  ->  M  e.  NN0 )
rami.r  |-  ( ph  ->  R  e.  V )
rami.f  |-  ( ph  ->  F : R --> NN0 )
rami.x  |-  ( ph  ->  ( M Ramsey  F )  e.  NN0 )
rami.s  |-  ( ph  ->  S  e.  W )
rami.l  |-  ( ph  ->  ( M Ramsey  F )  <_  ( # `  S
) )
rami.g  |-  ( ph  ->  G : ( S C M ) --> R )
Assertion
Ref Expression
rami  |-  ( ph  ->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
Distinct variable groups:    x, c, C    G, c, x    ph, c, x    S, c, x    F, c, x    a, b, c, i, x, M    R, c, x    V, c, x
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    S( i, a, b)    F( i, a, b)    G( i, a, b)    V( i, a, b)    W( x, i, a, b, c)

Proof of Theorem rami
Dummy variables  f  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.g . . 3  |-  ( ph  ->  G : ( S C M ) --> R )
2 rami.r . . . 4  |-  ( ph  ->  R  e.  V )
3 ovex 6336 . . . 4  |-  ( S C M )  e. 
_V
4 elmapg 7503 . . . 4  |-  ( ( R  e.  V  /\  ( S C M )  e.  _V )  -> 
( G  e.  ( R  ^m  ( S C M ) )  <-> 
G : ( S C M ) --> R ) )
52, 3, 4sylancl 675 . . 3  |-  ( ph  ->  ( G  e.  ( R  ^m  ( S C M ) )  <-> 
G : ( S C M ) --> R ) )
61, 5mpbird 240 . 2  |-  ( ph  ->  G  e.  ( R  ^m  ( S C M ) ) )
7 rami.s . . 3  |-  ( ph  ->  S  e.  W )
8 rami.x . . . . 5  |-  ( ph  ->  ( M Ramsey  F )  e.  NN0 )
9 rami.m . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
10 rami.f . . . . . 6  |-  ( ph  ->  F : R --> NN0 )
11 rami.c . . . . . . . 8  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
12 eqid 2471 . . . . . . . 8  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }  =  { n  e. 
NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }
1311, 12ramtcl2 15045 . . . . . . 7  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }  =/=  (/) ) )
1411, 12ramtcl 15043 . . . . . . 7  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }  <->  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }  =/=  (/) ) )
1513, 14bitr4d 264 . . . . . 6  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  ( M Ramsey  F )  e.  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } ) )
169, 2, 10, 15syl3anc 1292 . . . . 5  |-  ( ph  ->  ( ( M Ramsey  F
)  e.  NN0  <->  ( M Ramsey  F )  e.  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } ) )
178, 16mpbid 215 . . . 4  |-  ( ph  ->  ( M Ramsey  F )  e.  { n  e. 
NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } )
18 breq1 4398 . . . . . . . 8  |-  ( n  =  ( M Ramsey  F
)  ->  ( n  <_  ( # `  s
)  <->  ( M Ramsey  F
)  <_  ( # `  s
) ) )
1918imbi1d 324 . . . . . . 7  |-  ( n  =  ( M Ramsey  F
)  ->  ( (
n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  ( ( M Ramsey  F )  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) ) )
2019albidv 1775 . . . . . 6  |-  ( n  =  ( M Ramsey  F
)  ->  ( A. s ( n  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  A. s ( ( M Ramsey  F )  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
2120elrab 3184 . . . . 5  |-  ( ( M Ramsey  F )  e. 
{ n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }  <->  ( ( M Ramsey  F )  e.  NN0  /\ 
A. s ( ( M Ramsey  F )  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
2221simprbi 471 . . . 4  |-  ( ( M Ramsey  F )  e. 
{ n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }  ->  A. s
( ( M Ramsey  F
)  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
2317, 22syl 17 . . 3  |-  ( ph  ->  A. s ( ( M Ramsey  F )  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
24 rami.l . . 3  |-  ( ph  ->  ( M Ramsey  F )  <_  ( # `  S
) )
25 fveq2 5879 . . . . . 6  |-  ( s  =  S  ->  ( # `
 s )  =  ( # `  S
) )
2625breq2d 4407 . . . . 5  |-  ( s  =  S  ->  (
( M Ramsey  F )  <_  ( # `  s
)  <->  ( M Ramsey  F
)  <_  ( # `  S
) ) )
27 oveq1 6315 . . . . . . 7  |-  ( s  =  S  ->  (
s C M )  =  ( S C M ) )
2827oveq2d 6324 . . . . . 6  |-  ( s  =  S  ->  ( R  ^m  ( s C M ) )  =  ( R  ^m  ( S C M ) ) )
29 pweq 3945 . . . . . . . 8  |-  ( s  =  S  ->  ~P s  =  ~P S
)
3029rexeqdv 2980 . . . . . . 7  |-  ( s  =  S  ->  ( E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
3130rexbidv 2892 . . . . . 6  |-  ( s  =  S  ->  ( E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
3228, 31raleqbidv 2987 . . . . 5  |-  ( s  =  S  ->  ( A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) )  <->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
3326, 32imbi12d 327 . . . 4  |-  ( s  =  S  ->  (
( ( M Ramsey  F
)  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  ( ( M Ramsey  F )  <_  ( # `
 S )  ->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) ) )
3433spcgv 3120 . . 3  |-  ( S  e.  W  ->  ( A. s ( ( M Ramsey  F )  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) )  -> 
( ( M Ramsey  F
)  <_  ( # `  S
)  ->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
357, 23, 24, 34syl3c 62 . 2  |-  ( ph  ->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )
36 cnveq 5013 . . . . . . 7  |-  ( f  =  G  ->  `' f  =  `' G
)
3736imaeq1d 5173 . . . . . 6  |-  ( f  =  G  ->  ( `' f " {
c } )  =  ( `' G " { c } ) )
3837sseq2d 3446 . . . . 5  |-  ( f  =  G  ->  (
( x C M )  C_  ( `' f " { c } )  <->  ( x C M )  C_  ( `' G " { c } ) ) )
3938anbi2d 718 . . . 4  |-  ( f  =  G  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) )  <->  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) ) ) )
40392rexbidv 2897 . . 3  |-  ( f  =  G  ->  ( E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) ) )
4140rspcv 3132 . 2  |-  ( G  e.  ( R  ^m  ( S C M ) )  ->  ( A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) )  ->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) ) )
426, 35, 41sylc 61 1  |-  ( ph  ->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   class class class wbr 4395   `'ccnv 4838   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310    ^m cmap 7490    <_ cle 9694   NN0cn0 10893   #chash 12553   Ramsey cram 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-ram 15031
This theorem is referenced by:  ramlb  15056  ramub1lem2  15064
  Copyright terms: Public domain W3C validator