MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rami Structured version   Unicode version

Theorem rami 14742
Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
rami.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
rami.m  |-  ( ph  ->  M  e.  NN0 )
rami.r  |-  ( ph  ->  R  e.  V )
rami.f  |-  ( ph  ->  F : R --> NN0 )
rami.x  |-  ( ph  ->  ( M Ramsey  F )  e.  NN0 )
rami.s  |-  ( ph  ->  S  e.  W )
rami.l  |-  ( ph  ->  ( M Ramsey  F )  <_  ( # `  S
) )
rami.g  |-  ( ph  ->  G : ( S C M ) --> R )
Assertion
Ref Expression
rami  |-  ( ph  ->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
Distinct variable groups:    x, c, C    G, c, x    ph, c, x    S, c, x    F, c, x    a, b, c, i, x, M    R, c, x    V, c, x
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    S( i, a, b)    F( i, a, b)    G( i, a, b)    V( i, a, b)    W( x, i, a, b, c)

Proof of Theorem rami
Dummy variables  f  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.g . . 3  |-  ( ph  ->  G : ( S C M ) --> R )
2 rami.r . . . 4  |-  ( ph  ->  R  e.  V )
3 ovex 6306 . . . 4  |-  ( S C M )  e. 
_V
4 elmapg 7470 . . . 4  |-  ( ( R  e.  V  /\  ( S C M )  e.  _V )  -> 
( G  e.  ( R  ^m  ( S C M ) )  <-> 
G : ( S C M ) --> R ) )
52, 3, 4sylancl 660 . . 3  |-  ( ph  ->  ( G  e.  ( R  ^m  ( S C M ) )  <-> 
G : ( S C M ) --> R ) )
61, 5mpbird 232 . 2  |-  ( ph  ->  G  e.  ( R  ^m  ( S C M ) ) )
7 rami.s . . 3  |-  ( ph  ->  S  e.  W )
8 rami.x . . . . 5  |-  ( ph  ->  ( M Ramsey  F )  e.  NN0 )
9 rami.m . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
10 rami.f . . . . . 6  |-  ( ph  ->  F : R --> NN0 )
11 rami.c . . . . . . . 8  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
12 eqid 2402 . . . . . . . 8  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }  =  { n  e. 
NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }
1311, 12ramtcl2 14738 . . . . . . 7  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }  =/=  (/) ) )
1411, 12ramtcl 14737 . . . . . . 7  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }  <->  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }  =/=  (/) ) )
1513, 14bitr4d 256 . . . . . 6  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  ( M Ramsey  F )  e.  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } ) )
169, 2, 10, 15syl3anc 1230 . . . . 5  |-  ( ph  ->  ( ( M Ramsey  F
)  e.  NN0  <->  ( M Ramsey  F )  e.  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } ) )
178, 16mpbid 210 . . . 4  |-  ( ph  ->  ( M Ramsey  F )  e.  { n  e. 
NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } )
18 breq1 4398 . . . . . . . 8  |-  ( n  =  ( M Ramsey  F
)  ->  ( n  <_  ( # `  s
)  <->  ( M Ramsey  F
)  <_  ( # `  s
) ) )
1918imbi1d 315 . . . . . . 7  |-  ( n  =  ( M Ramsey  F
)  ->  ( (
n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  ( ( M Ramsey  F )  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) ) )
2019albidv 1734 . . . . . 6  |-  ( n  =  ( M Ramsey  F
)  ->  ( A. s ( n  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  A. s ( ( M Ramsey  F )  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
2120elrab 3207 . . . . 5  |-  ( ( M Ramsey  F )  e. 
{ n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }  <->  ( ( M Ramsey  F )  e.  NN0  /\ 
A. s ( ( M Ramsey  F )  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
2221simprbi 462 . . . 4  |-  ( ( M Ramsey  F )  e. 
{ n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }  ->  A. s
( ( M Ramsey  F
)  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
2317, 22syl 17 . . 3  |-  ( ph  ->  A. s ( ( M Ramsey  F )  <_ 
( # `  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
24 rami.l . . 3  |-  ( ph  ->  ( M Ramsey  F )  <_  ( # `  S
) )
25 fveq2 5849 . . . . . 6  |-  ( s  =  S  ->  ( # `
 s )  =  ( # `  S
) )
2625breq2d 4407 . . . . 5  |-  ( s  =  S  ->  (
( M Ramsey  F )  <_  ( # `  s
)  <->  ( M Ramsey  F
)  <_  ( # `  S
) ) )
27 oveq1 6285 . . . . . . 7  |-  ( s  =  S  ->  (
s C M )  =  ( S C M ) )
2827oveq2d 6294 . . . . . 6  |-  ( s  =  S  ->  ( R  ^m  ( s C M ) )  =  ( R  ^m  ( S C M ) ) )
29 pweq 3958 . . . . . . . 8  |-  ( s  =  S  ->  ~P s  =  ~P S
)
3029rexeqdv 3011 . . . . . . 7  |-  ( s  =  S  ->  ( E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
3130rexbidv 2918 . . . . . 6  |-  ( s  =  S  ->  ( E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
3228, 31raleqbidv 3018 . . . . 5  |-  ( s  =  S  ->  ( A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) )  <->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) )
3326, 32imbi12d 318 . . . 4  |-  ( s  =  S  ->  (
( ( M Ramsey  F
)  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  ( ( M Ramsey  F )  <_  ( # `
 S )  ->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) ) )
3433spcgv 3144 . . 3  |-  ( S  e.  W  ->  ( A. s ( ( M Ramsey  F )  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) )  -> 
( ( M Ramsey  F
)  <_  ( # `  S
)  ->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) ) )
357, 23, 24, 34syl3c 60 . 2  |-  ( ph  ->  A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )
36 cnveq 4997 . . . . . . 7  |-  ( f  =  G  ->  `' f  =  `' G
)
3736imaeq1d 5156 . . . . . 6  |-  ( f  =  G  ->  ( `' f " {
c } )  =  ( `' G " { c } ) )
3837sseq2d 3470 . . . . 5  |-  ( f  =  G  ->  (
( x C M )  C_  ( `' f " { c } )  <->  ( x C M )  C_  ( `' G " { c } ) ) )
3938anbi2d 702 . . . 4  |-  ( f  =  G  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) )  <->  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) ) ) )
40392rexbidv 2925 . . 3  |-  ( f  =  G  ->  ( E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) ) )
4140rspcv 3156 . 2  |-  ( G  e.  ( R  ^m  ( S C M ) )  ->  ( A. f  e.  ( R  ^m  ( S C M ) ) E. c  e.  R  E. x  e.  ~P  S ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) )  ->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) ) )
426, 35, 41sylc 59 1  |-  ( ph  ->  E. c  e.  R  E. x  e.  ~P  S ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974   A.wal 1403    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   {crab 2758   _Vcvv 3059    C_ wss 3414   (/)c0 3738   ~Pcpw 3955   {csn 3972   class class class wbr 4395   `'ccnv 4822   "cima 4826   -->wf 5565   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280    ^m cmap 7457    <_ cle 9659   NN0cn0 10836   #chash 12452   Ramsey cram 14726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-ram 14728
This theorem is referenced by:  ramlb  14746  ramub1lem2  14754
  Copyright terms: Public domain W3C validator