MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl2lemOLD Structured version   Visualization version   Unicode version

Theorem ramcl2lemOLD 15042
Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.) Obsolete version of ramcl2lem 15041 as of 14-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramcl2lemOLD  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramcl2lemOLD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2482 . 2  |-  ( +oo  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  -> 
( ( M Ramsey  F
)  = +oo  <->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) ) )
2 eqeq2 2482 . 2  |-  ( sup ( T ,  RR ,  `'  <  )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  -> 
( ( M Ramsey  F
)  =  sup ( T ,  RR ,  `'  <  )  <->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) ) )
3 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
4 ramval.t . . . 4  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
53, 4ramvalOLD 15040 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
6 supeq1 7977 . . . 4  |-  ( T  =  (/)  ->  sup ( T ,  RR* ,  `'  <  )  =  sup ( (/)
,  RR* ,  `'  <  ) )
7 xrinfm0OLD 11652 . . . 4  |-  sup ( (/)
,  RR* ,  `'  <  )  = +oo
86, 7syl6eq 2521 . . 3  |-  ( T  =  (/)  ->  sup ( T ,  RR* ,  `'  <  )  = +oo )
95, 8sylan9eq 2525 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =  (/) )  -> 
( M Ramsey  F )  = +oo )
10 df-ne 2643 . . 3  |-  ( T  =/=  (/)  <->  -.  T  =  (/) )
115adantr 472 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  )
)
12 xrltso 11463 . . . . . . 7  |-  <  Or  RR*
13 cnvso 5382 . . . . . . 7  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1412, 13mpbi 213 . . . . . 6  |-  `'  <  Or 
RR*
1514a1i 11 . . . . 5  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  `'  <  Or  RR* )
16 ssrab2 3500 . . . . . . . . 9  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } 
C_  NN0
174, 16eqsstri 3448 . . . . . . . 8  |-  T  C_  NN0
18 nn0ssre 10897 . . . . . . . 8  |-  NN0  C_  RR
1917, 18sstri 3427 . . . . . . 7  |-  T  C_  RR
20 nn0uz 11217 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2117, 20sseqtri 3450 . . . . . . . . 9  |-  T  C_  ( ZZ>= `  0 )
2221a1i 11 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  T  C_  ( ZZ>= ` 
0 ) )
23 infmssuzclOLD 11270 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
2422, 23sylan 479 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
2519, 24sseldi 3416 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
2625rexrd 9708 . . . . 5  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e. 
RR* )
27 simpr 468 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  z  e.  T )
28 infmssuzleOLD 11269 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  z
)
2921, 27, 28sylancr 676 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  z
)
3025adantr 472 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
3119a1i 11 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  T  C_  RR )
3231sselda 3418 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  z  e.  RR )
3330, 32lenltd 9798 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  <_ 
z  <->  -.  z  <  sup ( T ,  RR ,  `'  <  ) ) )
3429, 33mpbid 215 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  -.  z  <  sup ( T ,  RR ,  `'  <  ) )
35 gtso 9733 . . . . . . . 8  |-  `'  <  Or  RR
3635supex 7995 . . . . . . 7  |-  sup ( T ,  RR ,  `'  <  )  e.  _V
37 vex 3034 . . . . . . 7  |-  z  e. 
_V
3836, 37brcnv 5022 . . . . . 6  |-  ( sup ( T ,  RR ,  `'  <  ) `'  <  z  <->  z  <  sup ( T ,  RR ,  `'  <  ) )
3934, 38sylnibr 312 . . . . 5  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  -.  sup ( T ,  RR ,  `'  <  ) `'  <  z )
4015, 26, 24, 39supmax 7999 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR* ,  `'  <  )  =  sup ( T ,  RR ,  `'  <  ) )
4111, 40eqtrd 2505 . . 3  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR ,  `'  <  ) )
4210, 41sylan2br 484 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  -.  T  =  (/) )  ->  ( M Ramsey  F
)  =  sup ( T ,  RR ,  `'  <  ) )
431, 2, 9, 42ifbothda 3907 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    C_ wss 3390   (/)c0 3722   ifcif 3872   ~Pcpw 3942   {csn 3959   class class class wbr 4395    Or wor 4759   `'ccnv 4838   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310    ^m cmap 7490   supcsup 7972   RRcr 9556   0cc0 9557   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694   NN0cn0 10893   ZZ>=cuz 11182   #chash 12553   Ramsey cramold 15029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-ramOLD 15032
This theorem is referenced by:  ramtclOLD  15044  ramtcl2OLD  15046  ramtubOLD  15048  ramcl2OLD  15053
  Copyright terms: Public domain W3C validator