MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl2lem Structured version   Unicode version

Theorem ramcl2lem 14085
Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramcl2lem  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramcl2lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2452 . 2  |-  ( +oo  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  -> 
( ( M Ramsey  F
)  = +oo  <->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) ) )
2 eqeq2 2452 . 2  |-  ( sup ( T ,  RR ,  `'  <  )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) )  -> 
( ( M Ramsey  F
)  =  sup ( T ,  RR ,  `'  <  )  <->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) ) )
3 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
4 ramval.t . . . 4  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
53, 4ramval 14084 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
6 supeq1 7710 . . . 4  |-  ( T  =  (/)  ->  sup ( T ,  RR* ,  `'  <  )  =  sup ( (/)
,  RR* ,  `'  <  ) )
7 xrinfm0 11314 . . . 4  |-  sup ( (/)
,  RR* ,  `'  <  )  = +oo
86, 7syl6eq 2491 . . 3  |-  ( T  =  (/)  ->  sup ( T ,  RR* ,  `'  <  )  = +oo )
95, 8sylan9eq 2495 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =  (/) )  -> 
( M Ramsey  F )  = +oo )
10 df-ne 2622 . . 3  |-  ( T  =/=  (/)  <->  -.  T  =  (/) )
115adantr 465 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  )
)
12 xrltso 11133 . . . . . . 7  |-  <  Or  RR*
13 cnvso 5391 . . . . . . 7  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1412, 13mpbi 208 . . . . . 6  |-  `'  <  Or 
RR*
1514a1i 11 . . . . 5  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  `'  <  Or  RR* )
16 ssrab2 3452 . . . . . . . . 9  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } 
C_  NN0
174, 16eqsstri 3401 . . . . . . . 8  |-  T  C_  NN0
18 nn0ssre 10598 . . . . . . . 8  |-  NN0  C_  RR
1917, 18sstri 3380 . . . . . . 7  |-  T  C_  RR
20 nn0uz 10910 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2117, 20sseqtri 3403 . . . . . . . . 9  |-  T  C_  ( ZZ>= `  0 )
2221a1i 11 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  T  C_  ( ZZ>= ` 
0 ) )
23 infmssuzcl 10953 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
2422, 23sylan 471 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
2519, 24sseldi 3369 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
2625rexrd 9448 . . . . 5  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e. 
RR* )
27 simpr 461 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  z  e.  T )
28 infmssuzle 10952 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  z
)
2921, 27, 28sylancr 663 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  z
)
3025adantr 465 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
3119a1i 11 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  T  C_  RR )
3231sselda 3371 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  z  e.  RR )
3330, 32lenltd 9535 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  <_ 
z  <->  -.  z  <  sup ( T ,  RR ,  `'  <  ) ) )
3429, 33mpbid 210 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  -.  z  <  sup ( T ,  RR ,  `'  <  ) )
35 gtso 9471 . . . . . . . 8  |-  `'  <  Or  RR
3635supex 7728 . . . . . . 7  |-  sup ( T ,  RR ,  `'  <  )  e.  _V
37 vex 2990 . . . . . . 7  |-  z  e. 
_V
3836, 37brcnv 5037 . . . . . 6  |-  ( sup ( T ,  RR ,  `'  <  ) `'  <  z  <->  z  <  sup ( T ,  RR ,  `'  <  ) )
3934, 38sylnibr 305 . . . . 5  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  -.  sup ( T ,  RR ,  `'  <  ) `'  <  z )
4015, 26, 24, 39supmax 7730 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR* ,  `'  <  )  =  sup ( T ,  RR ,  `'  <  ) )
4111, 40eqtrd 2475 . . 3  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR ,  `'  <  ) )
4210, 41sylan2br 476 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  -.  T  =  (/) )  ->  ( M Ramsey  F
)  =  sup ( T ,  RR ,  `'  <  ) )
431, 2, 9, 42ifbothda 3839 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) , +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2730   E.wrex 2731   {crab 2734   _Vcvv 2987    C_ wss 3343   (/)c0 3652   ifcif 3806   ~Pcpw 3875   {csn 3892   class class class wbr 4307    Or wor 4655   `'ccnv 4854   "cima 4858   -->wf 5429   ` cfv 5433  (class class class)co 6106    e. cmpt2 6108    ^m cmap 7229   supcsup 7705   RRcr 9296   0cc0 9297   +oocpnf 9430   RR*cxr 9432    < clt 9433    <_ cle 9434   NN0cn0 10594   ZZ>=cuz 10876   #chash 12118   Ramsey cram 14075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-er 7116  df-map 7231  df-en 7326  df-dom 7327  df-sdom 7328  df-sup 7706  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-n0 10595  df-z 10662  df-uz 10877  df-ram 14077
This theorem is referenced by:  ramtcl  14086  ramtcl2  14087  ramtub  14088  ramcl2  14092
  Copyright terms: Public domain W3C validator