MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpmap Structured version   Unicode version

Theorem ralxpmap 7262
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
ralxpmap.j  |-  ( f  =  ( g  u. 
{ <. J ,  y
>. } )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralxpmap  |-  ( J  e.  T  ->  ( A. f  e.  ( S  ^m  T ) ph  <->  A. y  e.  S  A. g  e.  ( S  ^m  ( T  \  { J } ) ) ps ) )
Distinct variable groups:    ph, g, y    ps, f    f, J, g, y    S, f, g, y    T, f, g, y
Allowed substitution hints:    ph( f)    ps( y, g)

Proof of Theorem ralxpmap
StepHypRef Expression
1 vex 2975 . . 3  |-  g  e. 
_V
2 snex 4533 . . 3  |-  { <. J ,  y >. }  e.  _V
31, 2unex 6378 . 2  |-  ( g  u.  { <. J , 
y >. } )  e. 
_V
4 simpr 461 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f  e.  ( S  ^m  T ) )
5 elmapex 7233 . . . . . . . . 9  |-  ( f  e.  ( S  ^m  T )  ->  ( S  e.  _V  /\  T  e.  _V ) )
65adantl 466 . . . . . . . 8  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( S  e.  _V  /\  T  e.  _V )
)
7 elmapg 7227 . . . . . . . 8  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( f  e.  ( S  ^m  T )  <-> 
f : T --> S ) )
86, 7syl 16 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f  e.  ( S  ^m  T )  <-> 
f : T --> S ) )
94, 8mpbid 210 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f : T --> S )
10 simpl 457 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  J  e.  T )
119, 10ffvelrnd 5844 . . . . 5  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f `  J
)  e.  S )
12 difss 3483 . . . . . . 7  |-  ( T 
\  { J }
)  C_  T
13 fssres 5578 . . . . . . 7  |-  ( ( f : T --> S  /\  ( T  \  { J } )  C_  T
)  ->  ( f  |`  ( T  \  { J } ) ) : ( T  \  { J } ) --> S )
149, 12, 13sylancl 662 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f  |`  ( T  \  { J }
) ) : ( T  \  { J } ) --> S )
155simpld 459 . . . . . . . 8  |-  ( f  e.  ( S  ^m  T )  ->  S  e.  _V )
1615adantl 466 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  S  e.  _V )
176simprd 463 . . . . . . . 8  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  T  e.  _V )
18 difexg 4440 . . . . . . . 8  |-  ( T  e.  _V  ->  ( T  \  { J }
)  e.  _V )
1917, 18syl 16 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( T  \  { J } )  e.  _V )
20 elmapg 7227 . . . . . . 7  |-  ( ( S  e.  _V  /\  ( T  \  { J } )  e.  _V )  ->  ( ( f  |`  ( T  \  { J } ) )  e.  ( S  ^m  ( T  \  { J }
) )  <->  ( f  |`  ( T  \  { J } ) ) : ( T  \  { J } ) --> S ) )
2116, 19, 20syl2anc 661 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( ( f  |`  ( T  \  { J } ) )  e.  ( S  ^m  ( T  \  { J }
) )  <->  ( f  |`  ( T  \  { J } ) ) : ( T  \  { J } ) --> S ) )
2214, 21mpbird 232 . . . . 5  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f  |`  ( T  \  { J }
) )  e.  ( S  ^m  ( T 
\  { J }
) ) )
23 ffn 5559 . . . . . . 7  |-  ( f : T --> S  -> 
f  Fn  T )
249, 23syl 16 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f  Fn  T )
25 fnsnsplit 5915 . . . . . 6  |-  ( ( f  Fn  T  /\  J  e.  T )  ->  f  =  ( ( f  |`  ( T  \  { J } ) )  u.  { <. J ,  ( f `  J ) >. } ) )
2624, 10, 25syl2anc 661 . . . . 5  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f  =  ( ( f  |`  ( T  \  { J } ) )  u.  { <. J ,  ( f `  J ) >. } ) )
27 opeq2 4060 . . . . . . . . 9  |-  ( y  =  ( f `  J )  ->  <. J , 
y >.  =  <. J , 
( f `  J
) >. )
2827sneqd 3889 . . . . . . . 8  |-  ( y  =  ( f `  J )  ->  { <. J ,  y >. }  =  { <. J ,  ( f `  J )
>. } )
2928uneq2d 3510 . . . . . . 7  |-  ( y  =  ( f `  J )  ->  (
g  u.  { <. J ,  y >. } )  =  ( g  u. 
{ <. J ,  ( f `  J )
>. } ) )
3029eqeq2d 2454 . . . . . 6  |-  ( y  =  ( f `  J )  ->  (
f  =  ( g  u.  { <. J , 
y >. } )  <->  f  =  ( g  u.  { <. J ,  ( f `
 J ) >. } ) ) )
31 uneq1 3503 . . . . . . 7  |-  ( g  =  ( f  |`  ( T  \  { J } ) )  -> 
( g  u.  { <. J ,  ( f `
 J ) >. } )  =  ( ( f  |`  ( T  \  { J }
) )  u.  { <. J ,  ( f `
 J ) >. } ) )
3231eqeq2d 2454 . . . . . 6  |-  ( g  =  ( f  |`  ( T  \  { J } ) )  -> 
( f  =  ( g  u.  { <. J ,  ( f `  J ) >. } )  <-> 
f  =  ( ( f  |`  ( T  \  { J } ) )  u.  { <. J ,  ( f `  J ) >. } ) ) )
3330, 32rspc2ev 3081 . . . . 5  |-  ( ( ( f `  J
)  e.  S  /\  ( f  |`  ( T  \  { J }
) )  e.  ( S  ^m  ( T 
\  { J }
) )  /\  f  =  ( ( f  |`  ( T  \  { J } ) )  u. 
{ <. J ,  ( f `  J )
>. } ) )  ->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } ) )
3411, 22, 26, 33syl3anc 1218 . . . 4  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } ) )
3534ex 434 . . 3  |-  ( J  e.  T  ->  (
f  e.  ( S  ^m  T )  ->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } ) ) )
36 elmapi 7234 . . . . . . . . . 10  |-  ( g  e.  ( S  ^m  ( T  \  { J } ) )  -> 
g : ( T 
\  { J }
) --> S )
3736ad2antll 728 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  g : ( T  \  { J } ) --> S )
38 vex 2975 . . . . . . . . . . 11  |-  y  e. 
_V
39 f1osng 5679 . . . . . . . . . . . 12  |-  ( ( J  e.  T  /\  y  e.  _V )  ->  { <. J ,  y
>. } : { J }
-1-1-onto-> { y } )
40 f1of 5641 . . . . . . . . . . . 12  |-  ( {
<. J ,  y >. } : { J } -1-1-onto-> {
y }  ->  { <. J ,  y >. } : { J } --> { y } )
4139, 40syl 16 . . . . . . . . . . 11  |-  ( ( J  e.  T  /\  y  e.  _V )  ->  { <. J ,  y
>. } : { J }
--> { y } )
4238, 41mpan2 671 . . . . . . . . . 10  |-  ( J  e.  T  ->  { <. J ,  y >. } : { J } --> { y } )
4342adantr 465 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  { <. J ,  y >. } : { J } --> { y } )
44 incom 3543 . . . . . . . . . . 11  |-  ( ( T  \  { J } )  i^i  { J } )  =  ( { J }  i^i  ( T  \  { J } ) )
45 disjdif 3751 . . . . . . . . . . 11  |-  ( { J }  i^i  ( T  \  { J }
) )  =  (/)
4644, 45eqtri 2463 . . . . . . . . . 10  |-  ( ( T  \  { J } )  i^i  { J } )  =  (/)
4746a1i 11 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( T  \  { J } )  i^i  { J } )  =  (/) )
48 fun 5575 . . . . . . . . 9  |-  ( ( ( g : ( T  \  { J } ) --> S  /\  {
<. J ,  y >. } : { J } --> { y } )  /\  ( ( T 
\  { J }
)  i^i  { J } )  =  (/) )  ->  ( g  u. 
{ <. J ,  y
>. } ) : ( ( T  \  { J } )  u.  { J } ) --> ( S  u.  { y } ) )
4937, 43, 47, 48syl21anc 1217 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } ) : ( ( T 
\  { J }
)  u.  { J } ) --> ( S  u.  { y } ) )
50 uncom 3500 . . . . . . . . . 10  |-  ( ( T  \  { J } )  u.  { J } )  =  ( { J }  u.  ( T  \  { J } ) )
51 simpl 457 . . . . . . . . . . . 12  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  J  e.  T )
5251snssd 4018 . . . . . . . . . . 11  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  { J }  C_  T )
53 undif 3759 . . . . . . . . . . 11  |-  ( { J }  C_  T  <->  ( { J }  u.  ( T  \  { J } ) )  =  T )
5452, 53sylib 196 . . . . . . . . . 10  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( { J }  u.  ( T  \  { J }
) )  =  T )
5550, 54syl5eq 2487 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( T  \  { J } )  u.  { J } )  =  T )
5655feq2d 5547 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( g  u.  { <. J ,  y >. } ) : ( ( T  \  { J } )  u.  { J } ) --> ( S  u.  { y } )  <->  ( g  u. 
{ <. J ,  y
>. } ) : T --> ( S  u.  { y } ) ) )
5749, 56mpbid 210 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } ) : T --> ( S  u.  { y } ) )
58 ssid 3375 . . . . . . . . 9  |-  S  C_  S
5958a1i 11 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  S  C_  S )
60 snssi 4017 . . . . . . . . 9  |-  ( y  e.  S  ->  { y }  C_  S )
6160ad2antrl 727 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  { y }  C_  S )
6259, 61unssd 3532 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( S  u.  { y } )  C_  S
)
63 fss 5567 . . . . . . 7  |-  ( ( ( g  u.  { <. J ,  y >. } ) : T --> ( S  u.  { y } )  /\  ( S  u.  { y } )  C_  S
)  ->  ( g  u.  { <. J ,  y
>. } ) : T --> S )
6457, 62, 63syl2anc 661 . . . . . 6  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } ) : T --> S )
65 elmapex 7233 . . . . . . . . 9  |-  ( g  e.  ( S  ^m  ( T  \  { J } ) )  -> 
( S  e.  _V  /\  ( T  \  { J } )  e.  _V ) )
6665ad2antll 728 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( S  e.  _V  /\  ( T  \  { J }
)  e.  _V )
)
6766simpld 459 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  S  e.  _V )
68 ssun1 3519 . . . . . . . 8  |-  T  C_  ( T  u.  { J } )
69 undif1 3754 . . . . . . . . 9  |-  ( ( T  \  { J } )  u.  { J } )  =  ( T  u.  { J } )
7066simprd 463 . . . . . . . . . 10  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( T  \  { J }
)  e.  _V )
71 snex 4533 . . . . . . . . . 10  |-  { J }  e.  _V
72 unexg 6381 . . . . . . . . . 10  |-  ( ( ( T  \  { J } )  e.  _V  /\ 
{ J }  e.  _V )  ->  ( ( T  \  { J } )  u.  { J } )  e.  _V )
7370, 71, 72sylancl 662 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( T  \  { J } )  u.  { J } )  e.  _V )
7469, 73syl5eqelr 2528 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( T  u.  { J } )  e.  _V )
75 ssexg 4438 . . . . . . . 8  |-  ( ( T  C_  ( T  u.  { J } )  /\  ( T  u.  { J } )  e. 
_V )  ->  T  e.  _V )
7668, 74, 75sylancr 663 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  T  e.  _V )
77 elmapg 7227 . . . . . . 7  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( ( g  u. 
{ <. J ,  y
>. } )  e.  ( S  ^m  T )  <-> 
( g  u.  { <. J ,  y >. } ) : T --> S ) )
7867, 76, 77syl2anc 661 . . . . . 6  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( g  u.  { <. J ,  y >. } )  e.  ( S  ^m  T )  <-> 
( g  u.  { <. J ,  y >. } ) : T --> S ) )
7964, 78mpbird 232 . . . . 5  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } )  e.  ( S  ^m  T ) )
80 eleq1 2503 . . . . 5  |-  ( f  =  ( g  u. 
{ <. J ,  y
>. } )  ->  (
f  e.  ( S  ^m  T )  <->  ( g  u.  { <. J ,  y
>. } )  e.  ( S  ^m  T ) ) )
8179, 80syl5ibrcom 222 . . . 4  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
f  =  ( g  u.  { <. J , 
y >. } )  -> 
f  e.  ( S  ^m  T ) ) )
8281rexlimdvva 2848 . . 3  |-  ( J  e.  T  ->  ( E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } )  -> 
f  e.  ( S  ^m  T ) ) )
8335, 82impbid 191 . 2  |-  ( J  e.  T  ->  (
f  e.  ( S  ^m  T )  <->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J }
) ) f  =  ( g  u.  { <. J ,  y >. } ) ) )
84 ralxpmap.j . . 3  |-  ( f  =  ( g  u. 
{ <. J ,  y
>. } )  ->  ( ph 
<->  ps ) )
8584adantl 466 . 2  |-  ( ( J  e.  T  /\  f  =  ( g  u.  { <. J ,  y
>. } ) )  -> 
( ph  <->  ps ) )
863, 83, 85ralxpxfr2d 3084 1  |-  ( J  e.  T  ->  ( A. f  e.  ( S  ^m  T ) ph  <->  A. y  e.  S  A. g  e.  ( S  ^m  ( T  \  { J } ) ) ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972    \ cdif 3325    u. cun 3326    i^i cin 3327    C_ wss 3328   (/)c0 3637   {csn 3877   <.cop 3883    |` cres 4842    Fn wfn 5413   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091    ^m cmap 7214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-map 7216
This theorem is referenced by:  islindf4  18267
  Copyright terms: Public domain W3C validator