MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralunsn Structured version   Unicode version

Theorem ralunsn 4188
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralunsn  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable groups:    x, B    ps, x
Allowed substitution hints:    ph( x)    A( x)    C( x)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 3646 . 2  |-  ( A. x  e.  ( A  u.  { B } )
ph 
<->  ( A. x  e.  A  ph  /\  A. x  e.  { B } ph ) )
2 ralunsn.1 . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
32ralsng 4021 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  { B } ph  <->  ps ) )
43anbi2d 703 . 2  |-  ( B  e.  C  ->  (
( A. x  e.  A  ph  /\  A. x  e.  { B } ph )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
51, 4syl5bb 257 1  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799    u. cun 3435   {csn 3986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2804  df-v 3080  df-sbc 3295  df-un 3442  df-sn 3987
This theorem is referenced by:  2ralunsn  4189  symgextfo  16047  gsmsymgrfixlem1  16052  gsmsymgreqlem2  16056  symgfixf1  16063  mdetunilem9  18559  disjunsn  26088  clwlkisclwwlklem2a1  30590  clwlkf1clwwlklem  30671  cply1coe0bi  31005  m2pminv2lem  31239
  Copyright terms: Public domain W3C validator