MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralun Structured version   Unicode version

Theorem ralun 3622
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B
) ph )

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 3621 . 2  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
21biimpri 206 1  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B
) ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wral 2792    u. cun 3410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ral 2797  df-v 3056  df-un 3417
This theorem is referenced by:  ac6sfi  7643  frfi  7644  fpwwe2lem13  8896  drsdirfi  15196  lbsextlem4  17334  fbun  19515  filcon  19558  cnmpt2pc  20602  chtub  22653  eupap1  23718  prsiga  26694  finixpnum  28538  kelac1  29540  modfsummod  30369
  Copyright terms: Public domain W3C validator