MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmpt2 Structured version   Unicode version

Theorem ralrnmpt2 6194
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
ralrnmpt2.2  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrnmpt2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
Distinct variable groups:    y, z, A    z, B    z, C    z, F    ps, z    x, y, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y)    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y, z)

Proof of Theorem ralrnmpt2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpt2 6189 . . . 4  |-  ran  F  =  { w  |  E. x  e.  A  E. y  e.  B  w  =  C }
32raleqi 2911 . . 3  |-  ( A. z  e.  ran  F ph  <->  A. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph )
4 eqeq1 2439 . . . . 5  |-  ( w  =  z  ->  (
w  =  C  <->  z  =  C ) )
542rexbidv 2748 . . . 4  |-  ( w  =  z  ->  ( E. x  e.  A  E. y  e.  B  w  =  C  <->  E. x  e.  A  E. y  e.  B  z  =  C ) )
65ralab 3109 . . 3  |-  ( A. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph 
<-> 
A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )
)
7 ralcom4 2981 . . . 4  |-  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. z A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph ) )
8 r19.23v 2823 . . . . 5  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph )  <->  ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph ) )
98albii 1613 . . . 4  |-  ( A. z A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph )  <->  A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )
)
107, 9bitr2i 250 . . 3  |-  ( A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
113, 6, 103bitri 271 . 2  |-  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph ) )
12 ralcom4 2981 . . . . . 6  |-  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. z A. y  e.  B  ( z  =  C  ->  ph ) )
13 r19.23v 2823 . . . . . . 7  |-  ( A. y  e.  B  (
z  =  C  ->  ph )  <->  ( E. y  e.  B  z  =  C  ->  ph ) )
1413albii 1613 . . . . . 6  |-  ( A. z A. y  e.  B  ( z  =  C  ->  ph )  <->  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
1512, 14bitri 249 . . . . 5  |-  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
16 nfv 1672 . . . . . . . 8  |-  F/ z ps
17 ralrnmpt2.2 . . . . . . . 8  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
1816, 17ceqsalg 2987 . . . . . . 7  |-  ( C  e.  V  ->  ( A. z ( z  =  C  ->  ph )  <->  ps )
)
1918ralimi 2781 . . . . . 6  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( A. z ( z  =  C  ->  ph )  <->  ps )
)
20 ralbi 2843 . . . . . 6  |-  ( A. y  e.  B  ( A. z ( z  =  C  ->  ph )  <->  ps )  ->  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. y  e.  B  ps ) )
2119, 20syl 16 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
2215, 21syl5bbr 259 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
2322ralimi 2781 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
24 ralbi 2843 . . 3  |-  ( A. x  e.  A  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )  ->  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. y  e.  B  ps ) )
2523, 24syl 16 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. y  e.  B  ps )
)
2611, 25syl5bb 257 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1360    = wceq 1362    e. wcel 1755   {cab 2419   A.wral 2705   E.wrex 2706   ran crn 4828    e. cmpt2 6082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pr 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-sn 3866  df-pr 3868  df-op 3872  df-br 4281  df-opab 4339  df-cnv 4835  df-dm 4837  df-rn 4838  df-oprab 6084  df-mpt2 6085
This theorem is referenced by:  rexrnmpt2  6195  efgval2  16200  txcnp  19034  txcnmpt  19038  txflf  19420
  Copyright terms: Public domain W3C validator