MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmpt Structured version   Unicode version

Theorem ralrnmpt 5864
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1  |-  F  =  ( x  e.  A  |->  B )
ralrnmpt.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralrnmpt  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Distinct variable groups:    x, A    y, B    ch, y    y, F    ps, x
Allowed substitution hints:    ps( y)    ch( x)    A( y)    B( x)    F( x)    V( x, y)

Proof of Theorem ralrnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21fnmpt 5549 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
3 dfsbcq 3200 . . . . 5  |-  ( w  =  ( F `  z )  ->  ( [. w  /  y ]. ps  <->  [. ( F `  z )  /  y ]. ps ) )
43ralrn 5858 . . . 4  |-  ( F  Fn  A  ->  ( A. w  e.  ran  F
[. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z
)  /  y ]. ps ) )
52, 4syl 16 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z )  /  y ]. ps ) )
6 nfv 1673 . . . . 5  |-  F/ w ps
7 nfsbc1v 3218 . . . . 5  |-  F/ y
[. w  /  y ]. ps
8 sbceq1a 3209 . . . . 5  |-  ( y  =  w  ->  ( ps 
<-> 
[. w  /  y ]. ps ) )
96, 7, 8cbvral 2955 . . . 4  |-  ( A. y  e.  ran  F ps  <->  A. w  e.  ran  F [. w  /  y ]. ps )
109bicomi 202 . . 3  |-  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. y  e.  ran  F ps )
11 nfmpt1 4393 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
121, 11nfcxfr 2587 . . . . . 6  |-  F/_ x F
13 nfcv 2589 . . . . . 6  |-  F/_ x
z
1412, 13nffv 5710 . . . . 5  |-  F/_ x
( F `  z
)
15 nfv 1673 . . . . 5  |-  F/ x ps
1614, 15nfsbc 3220 . . . 4  |-  F/ x [. ( F `  z
)  /  y ]. ps
17 nfv 1673 . . . 4  |-  F/ z
[. ( F `  x )  /  y ]. ps
18 fveq2 5703 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
19 dfsbcq 3200 . . . . 5  |-  ( ( F `  z )  =  ( F `  x )  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2018, 19syl 16 . . . 4  |-  ( z  =  x  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2116, 17, 20cbvral 2955 . . 3  |-  ( A. z  e.  A  [. ( F `  z )  /  y ]. ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps )
225, 10, 213bitr3g 287 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps ) )
231fvmpt2 5793 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( F `  x
)  =  B )
24 dfsbcq 3200 . . . . . 6  |-  ( ( F `  x )  =  B  ->  ( [. ( F `  x
)  /  y ]. ps 
<-> 
[. B  /  y ]. ps ) )
2523, 24syl 16 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  [. B  / 
y ]. ps ) )
26 ralrnmpt.2 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2726sbcieg 3231 . . . . . 6  |-  ( B  e.  V  ->  ( [. B  /  y ]. ps  <->  ch ) )
2827adantl 466 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. B  / 
y ]. ps  <->  ch )
)
2925, 28bitrd 253 . . . 4  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  ch )
)
3029ralimiaa 2802 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )
31 ralbi 2865 . . 3  |-  ( A. x  e.  A  ( [. ( F `  x
)  /  y ]. ps 
<->  ch )  ->  ( A. x  e.  A  [. ( F `  x
)  /  y ]. ps 
<-> 
A. x  e.  A  ch ) )
3230, 31syl 16 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. x  e.  A  [. ( F `  x )  /  y ]. ps  <->  A. x  e.  A  ch ) )
3322, 32bitrd 253 1  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   [.wsbc 3198    e. cmpt 4362   ran crn 4853    Fn wfn 5425   ` cfv 5430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-fv 5438
This theorem is referenced by:  rexrnmpt  5865  ac6num  8660  gsumwspan  15536  dfod2  16077  ordtbaslem  18804  ordtrest2lem  18819  cncmp  19007  ptpjopn  19197  ordthmeolem  19386  tsmsfbas  19710  tsmsf1o  19731  prdsxmetlem  19955  prdsbl  20078  metdsf  20436  metdsge  20437  minveclem1  20923  minveclem3b  20927  minveclem6  20933  mbflimsup  21156  xrlimcnp  22374  minvecolem1  24287  minvecolem5  24294  minvecolem6  24295  ordtrest2NEWlem  26364  cvmsss2  27175  fin2so  28428  comppfsc  28591  prdsbnd  28704  rrnequiv  28746
  Copyright terms: Public domain W3C validator