Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvva Structured version   Unicode version

Theorem ralrimdvva 2827
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdvva.1
Assertion
Ref Expression
ralrimdvva
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem ralrimdvva
StepHypRef Expression
1 ralrimdvva.1 . . . 4
21ex 432 . . 3
32com23 78 . 2
43ralrimdvv 2826 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367   wcel 1842  wral 2753 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725 This theorem depends on definitions:  df-bi 185  df-an 369  df-ral 2758 This theorem is referenced by:  isosolem  6225  kgencn2  20348  fbunfip  20660  reconn  21623  c1lip1  22688  cdj3i  27759  ispridl2  31697  ispridlc  31729
 Copyright terms: Public domain W3C validator