Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvv Structured version   Unicode version

Theorem ralrimdvv 2916
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
Hypothesis
Ref Expression
ralrimdvv.1
Assertion
Ref Expression
ralrimdvv
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem ralrimdvv
StepHypRef Expression
1 ralrimdvv.1 . . . 4
21imp 429 . . 3
32ralrimivv 2913 . 2
43ex 434 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wcel 1758  wral 2799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-12 1794 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-ral 2804 This theorem is referenced by:  ralrimdvva  2917  lspsneu  17330  aalioulem4  21937  fargshiftf1  23695  pmatcoe1fsupp  31212
 Copyright terms: Public domain W3C validator