MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimd Structured version   Unicode version

Theorem ralrimd 2868
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
Hypotheses
Ref Expression
ralrimd.1  |-  F/ x ph
ralrimd.2  |-  F/ x ps
ralrimd.3  |-  ( ph  ->  ( ps  ->  (
x  e.  A  ->  ch ) ) )
Assertion
Ref Expression
ralrimd  |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch )
)

Proof of Theorem ralrimd
StepHypRef Expression
1 ralrimd.1 . . 3  |-  F/ x ph
2 ralrimd.2 . . 3  |-  F/ x ps
3 ralrimd.3 . . 3  |-  ( ph  ->  ( ps  ->  (
x  e.  A  ->  ch ) ) )
41, 2, 3alrimd 1829 . 2  |-  ( ph  ->  ( ps  ->  A. x
( x  e.  A  ->  ch ) ) )
5 df-ral 2819 . 2  |-  ( A. x  e.  A  ch  <->  A. x ( x  e.  A  ->  ch )
)
64, 5syl6ibr 227 1  |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1377   F/wnf 1599    e. wcel 1767   A.wral 2814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-12 1803
This theorem depends on definitions:  df-bi 185  df-ex 1597  df-nf 1600  df-ral 2819
This theorem is referenced by:  ralrimdvOLD  2881  reusv2lem3  4650  fliftfun  6198  mapxpen  7683  domtriomlem  8822  dedekind  9743  fzrevral  11762  ssralv2  32398  riotasv3d  33781
  Copyright terms: Public domain W3C validator