Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimd Structured version   Unicode version

Theorem ralrimd 2836
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
Hypotheses
Ref Expression
ralrimd.1
ralrimd.2
ralrimd.3
Assertion
Ref Expression
ralrimd

Proof of Theorem ralrimd
StepHypRef Expression
1 ralrimd.1 . . 3
2 ralrimd.2 . . 3
3 ralrimd.3 . . 3
41, 2, 3alrimd 1934 . 2
5 df-ral 2787 . 2
64, 5syl6ibr 230 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1435  wnf 1663   wcel 1870  wral 2782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-12 1907 This theorem depends on definitions:  df-bi 188  df-ex 1660  df-nf 1664  df-ral 2787 This theorem is referenced by:  ralrimdvOLD  2849  reusv2lem3  4628  fliftfun  6220  mapxpen  7744  domtriomlem  8870  dedekind  9796  fzrevral  11877  riotasv3d  32241  ssralv2  36525
 Copyright terms: Public domain W3C validator