Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralprg Structured version   Unicode version

Theorem ralprg 4063
 Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1
ralprg.2
Assertion
Ref Expression
ralprg
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem ralprg
StepHypRef Expression
1 df-pr 4017 . . . 4
21raleqi 3044 . . 3
3 ralunb 3670 . . 3
42, 3bitri 249 . 2
5 ralprg.1 . . . 4
65ralsng 4049 . . 3
7 ralprg.2 . . . 4
87ralsng 4049 . . 3
96, 8bi2anan9 873 . 2
104, 9syl5bb 257 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1383   wcel 1804  wral 2793   cun 3459  csn 4014  cpr 4016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ral 2798  df-v 3097  df-sbc 3314  df-un 3466  df-sn 4015  df-pr 4017 This theorem is referenced by:  raltpg  4065  ralpr  4067  iinxprg  4393  disjprg  4433  f12dfv  6164  f13dfv  6165  suppr  7932  injresinjlem  11904  gcdcllem2  14027  joinval2lem  15512  meetval2lem  15526  sgrp2rid2  15918  sgrp2nmndlem4  15920  sgrp2nmndlem5  15921  iccntr  21199  limcun  22172  cusgra2v  24334  cusgra3v  24336  spthispth  24447  4cycl4v4e  24538  4cycl4dv4e  24540  frgra3v  24874  3vfriswmgra  24877  sumpr  27642  prsiga  28004
 Copyright terms: Public domain W3C validator