Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdaa Structured version   Unicode version

Theorem ralimdaa 2806
 Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.)
Hypotheses
Ref Expression
ralimdaa.1
ralimdaa.2
Assertion
Ref Expression
ralimdaa

Proof of Theorem ralimdaa
StepHypRef Expression
1 ralimdaa.1 . . 3
2 ralimdaa.2 . . . 4
32ex 432 . . 3
41, 3ralrimi 2804 . 2
5 ralim 2793 . 2
64, 5syl 17 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367  wnf 1637   wcel 1842  wral 2754 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878 This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-nf 1638  df-ral 2759 This theorem is referenced by:  ralimdvaOLD  2813  eltsk2g  9159  ptcnplem  20414  infrglb  36952  stoweidlem61  37211  stoweid  37213  fourierdlem73  37330
 Copyright terms: Public domain W3C validator