MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Unicode version

Theorem ralima 5937
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralima  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. x  e.  ( F " B
) ph  <->  A. y  e.  B  ps ) )
Distinct variable groups:    ph, y    ps, x    x, F, y    x, B, y    x, A, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem ralima
StepHypRef Expression
1 fvex 5701 . . 3  |-  ( F `
 y )  e. 
_V
21a1i 11 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( F `  y )  e.  _V )
3 fvelimab 5741 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  x ) )
4 eqcom 2406 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2691 . . 3  |-  ( E. y  e.  B  ( F `  y )  =  x  <->  E. y  e.  B  x  =  ( F `  y ) )
63, 5syl6bb 253 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  x  =  ( F `  y ) ) )
7 rexima.x . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 453 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  x  =  ( F `  y ) )  ->  ( ph  <->  ps ) )
92, 6, 8ralxfr2d 4698 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. x  e.  ( F " B
) ph  <->  A. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   "cima 4840    Fn wfn 5408   ` cfv 5413
This theorem is referenced by:  supisolem  7431  ordtypelem6  7448  ordtypelem7  7449  limsupgle  12226  mrcuni  13801  ipodrsima  14546  mhmima  14718  ghmnsgima  14984  cntzmhm  15092  qtopeu  17701  kqdisj  17717  ghmcnp  18097  divstgplem  18103  qtopbaslem  18745  bndth  18936  fmcfil  19178  ovoliunlem1  19351  volsup2  19450  mbflimsup  19511  itg2gt0  19605  mdegleb  19940  efopn  20502  fsumdvdsmul  20933  imaelshi  23514  cvmopnlem  24918  ovoliunnfl  26147  voliunnfl  26149  volsupnfl  26150  gicabl  27131
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421
  Copyright terms: Public domain W3C validator