MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Structured version   Unicode version

Theorem ralima 6138
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralima  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. x  e.  ( F " B
) ph  <->  A. y  e.  B  ps ) )
Distinct variable groups:    ph, y    ps, x    x, F, y    x, B, y    x, A, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem ralima
StepHypRef Expression
1 fvex 5874 . . 3  |-  ( F `
 y )  e. 
_V
21a1i 11 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( F `  y )  e.  _V )
3 fvelimab 5921 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  x ) )
4 eqcom 2476 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2965 . . 3  |-  ( E. y  e.  B  ( F `  y )  =  x  <->  E. y  e.  B  x  =  ( F `  y ) )
63, 5syl6bb 261 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  x  =  ( F `  y ) ) )
7 rexima.x . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 466 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  x  =  ( F `  y ) )  ->  ( ph  <->  ps ) )
92, 6, 8ralxfr2d 4663 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( A. x  e.  ( F " B
) ph  <->  A. y  e.  B  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   "cima 5002    Fn wfn 5581   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594
This theorem is referenced by:  supisolem  7927  ordtypelem6  7944  ordtypelem7  7945  limsupgle  13256  mrcuni  14869  ipodrsima  15645  mhmima  15801  ghmnsgima  16082  cntzmhm  16168  qtopeu  19949  kqdisj  19965  ghmcnp  20345  divstgplem  20351  qtopbaslem  20997  bndth  21190  fmcfil  21443  ovoliunlem1  21645  volsup2  21746  mbflimsup  21805  itg2gt0  21899  mdegleb  22196  efopn  22764  fsumdvdsmul  23196  imaelshi  26650  cvmopnlem  28360  ovoliunnfl  29631  voliunnfl  29633  volsupnfl  29634  gicabl  30651
  Copyright terms: Public domain W3C validator