Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbii Structured version   Unicode version

Theorem raleqbii 2912
 Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1
raleqbii.2
Assertion
Ref Expression
raleqbii

Proof of Theorem raleqbii
StepHypRef Expression
1 raleqbii.1 . . . 4
21eleq2i 2545 . . 3
3 raleqbii.2 . . 3
42, 3imbi12i 326 . 2
54ralbii2 2896 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wceq 1379   wcel 1767  wral 2817 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-cleq 2459  df-clel 2462  df-ral 2822 This theorem is referenced by:  ply1coe  18207  ordtbaslem  19557  iscusp2  20673  elghom  25188  wfrlem5  29274  frrlem5  29318  iscrngo2  30322  tendoset  35956
 Copyright terms: Public domain W3C validator