MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifb Structured version   Unicode version

Theorem raldifb 3639
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb  |-  ( A. x  e.  A  (
x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B )
ph )

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 446 . . . 4  |-  ( ( ( x  e.  A  /\  x  e/  B )  ->  ph )  <->  ( x  e.  A  ->  ( x  e/  B  ->  ph )
) )
21bicomi 202 . . 3  |-  ( ( x  e.  A  -> 
( x  e/  B  ->  ph ) )  <->  ( (
x  e.  A  /\  x  e/  B )  ->  ph ) )
3 df-nel 2660 . . . . . 6  |-  ( x  e/  B  <->  -.  x  e.  B )
43anbi2i 694 . . . . 5  |-  ( ( x  e.  A  /\  x  e/  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 eldif 3481 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
65bicomi 202 . . . . 5  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  ( A  \  B ) )
74, 6bitri 249 . . . 4  |-  ( ( x  e.  A  /\  x  e/  B )  <->  x  e.  ( A  \  B ) )
87imbi1i 325 . . 3  |-  ( ( ( x  e.  A  /\  x  e/  B )  ->  ph )  <->  ( x  e.  ( A  \  B
)  ->  ph ) )
92, 8bitri 249 . 2  |-  ( ( x  e.  A  -> 
( x  e/  B  ->  ph ) )  <->  ( x  e.  ( A  \  B
)  ->  ph ) )
109ralbii2 2888 1  |-  ( A. x  e.  A  (
x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B )
ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1762    e/ wnel 2658   A.wral 2809    \ cdif 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-nel 2660  df-ral 2814  df-v 3110  df-dif 3474
This theorem is referenced by:  raldifsnb  4153  cusgrares  24136  2spotdisj  24726
  Copyright terms: Public domain W3C validator