MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifb Structured version   Unicode version

Theorem raldifb 3493
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb  |-  ( A. x  e.  A  (
x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B )
ph )

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 444 . . . 4  |-  ( ( ( x  e.  A  /\  x  e/  B )  ->  ph )  <->  ( x  e.  A  ->  ( x  e/  B  ->  ph )
) )
21bicomi 202 . . 3  |-  ( ( x  e.  A  -> 
( x  e/  B  ->  ph ) )  <->  ( (
x  e.  A  /\  x  e/  B )  ->  ph ) )
3 df-nel 2607 . . . . . 6  |-  ( x  e/  B  <->  -.  x  e.  B )
43anbi2i 689 . . . . 5  |-  ( ( x  e.  A  /\  x  e/  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 eldif 3335 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
65bicomi 202 . . . . 5  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  ( A  \  B ) )
74, 6bitri 249 . . . 4  |-  ( ( x  e.  A  /\  x  e/  B )  <->  x  e.  ( A  \  B ) )
87imbi1i 325 . . 3  |-  ( ( ( x  e.  A  /\  x  e/  B )  ->  ph )  <->  ( x  e.  ( A  \  B
)  ->  ph ) )
92, 8bitri 249 . 2  |-  ( ( x  e.  A  -> 
( x  e/  B  ->  ph ) )  <->  ( x  e.  ( A  \  B
)  ->  ph ) )
109ralbii2 2741 1  |-  ( A. x  e.  A  (
x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B )
ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1761    e/ wnel 2605   A.wral 2713    \ cdif 3322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-nel 2607  df-ral 2718  df-v 2972  df-dif 3328
This theorem is referenced by:  cusgrares  23315  raldifsnb  30048  2spotdisj  30579
  Copyright terms: Public domain W3C validator