MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragperp Structured version   Unicode version

Theorem ragperp 23130
Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
isperp.p  |-  P  =  ( Base `  G
)
isperp.d  |-  .-  =  ( dist `  G )
isperp.i  |-  I  =  (Itv `  G )
isperp.l  |-  L  =  (LineG `  G )
isperp.g  |-  ( ph  ->  G  e. TarskiG )
isperp.a  |-  ( ph  ->  A  e.  ran  L
)
ragperp.b  |-  ( ph  ->  B  e.  ran  L
)
ragperp.x  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
ragperp.u  |-  ( ph  ->  U  e.  A )
ragperp.v  |-  ( ph  ->  V  e.  B )
ragperp.1  |-  ( ph  ->  U  =/=  X )
ragperp.2  |-  ( ph  ->  V  =/=  X )
ragperp.r  |-  ( ph  ->  <" U X V ">  e.  (∟G `  G ) )
Assertion
Ref Expression
ragperp  |-  ( ph  ->  A (⟂G `  G
) B )

Proof of Theorem ragperp
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . 4  |-  P  =  ( Base `  G
)
2 isperp.d . . . 4  |-  .-  =  ( dist `  G )
3 isperp.i . . . 4  |-  I  =  (Itv `  G )
4 isperp.l . . . 4  |-  L  =  (LineG `  G )
5 eqid 2443 . . . 4  |-  (pInvG `  G )  =  (pInvG `  G )
6 isperp.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
76adantr 465 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  G  e. TarskiG )
8 ragperp.b . . . . . 6  |-  ( ph  ->  B  e.  ran  L
)
98adantr 465 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  B  e.  ran  L )
10 simprr 756 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
v  e.  B )
111, 4, 3, 7, 9, 10tglnpt 23005 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
v  e.  P )
12 isperp.a . . . . . 6  |-  ( ph  ->  A  e.  ran  L
)
1312adantr 465 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  A  e.  ran  L )
14 inss1 3591 . . . . . . 7  |-  ( A  i^i  B )  C_  A
15 ragperp.x . . . . . . 7  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
1614, 15sseldi 3375 . . . . . 6  |-  ( ph  ->  X  e.  A )
1716adantr 465 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  X  e.  A )
181, 4, 3, 7, 13, 17tglnpt 23005 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  X  e.  P )
19 simprl 755 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  u  e.  A )
201, 4, 3, 7, 13, 19tglnpt 23005 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  u  e.  P )
21 ragperp.v . . . . . . 7  |-  ( ph  ->  V  e.  B )
2221adantr 465 . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  V  e.  B )
231, 4, 3, 7, 9, 22tglnpt 23005 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  V  e.  P )
24 ragperp.u . . . . . . . . 9  |-  ( ph  ->  U  e.  A )
2524adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  U  e.  A )
261, 4, 3, 7, 13, 25tglnpt 23005 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  U  e.  P )
27 ragperp.r . . . . . . . 8  |-  ( ph  ->  <" U X V ">  e.  (∟G `  G ) )
2827adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  <" U X V ">  e.  (∟G `  G ) )
29 ragperp.1 . . . . . . . 8  |-  ( ph  ->  U  =/=  X )
3029adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  U  =/=  X )
3125adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  U  e.  A )
327adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  G  e. TarskiG )
3318adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  X  e.  P )
3420adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  u  e.  P )
35 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  -.  X  =  u )
3635neneqad 2705 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  X  =/=  u )
3713adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  A  e.  ran  L )
3817adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  X  e.  A )
3919adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  u  e.  A )
401, 3, 4, 32, 33, 34, 36, 36, 37, 38, 39tglinethru 23064 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  A  =  ( X L u ) )
4131, 40eleqtrd 2519 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  u )  ->  U  e.  ( X L u ) )
4241ex 434 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
( -.  X  =  u  ->  U  e.  ( X L u ) ) )
4342orrd 378 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
( X  =  u  \/  U  e.  ( X L u ) ) )
4443orcomd 388 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
( U  e.  ( X L u )  \/  X  =  u ) )
451, 2, 3, 4, 5, 7, 26, 18, 23, 20, 28, 30, 44ragcol 23115 . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  <" u X V ">  e.  (∟G `  G ) )
461, 2, 3, 4, 5, 7, 20, 18, 23, 45ragcom 23114 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  <" V X u ">  e.  (∟G `  G ) )
47 ragperp.2 . . . . . 6  |-  ( ph  ->  V  =/=  X )
4847adantr 465 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  V  =/=  X )
4922adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  V  e.  B )
507adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  G  e. TarskiG )
5118adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  X  e.  P )
5211adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  -> 
v  e.  P )
53 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  -.  X  =  v
)
5453neneqad 2705 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  X  =/=  v )
558ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  B  e.  ran  L )
56 inss2 3592 . . . . . . . . . . . 12  |-  ( A  i^i  B )  C_  B
5756, 15sseldi 3375 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  B )
5857ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  X  e.  B )
5910adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  -> 
v  e.  B )
601, 3, 4, 50, 51, 52, 54, 54, 55, 58, 59tglinethru 23064 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  B  =  ( X L v ) )
6149, 60eleqtrd 2519 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  A  /\  v  e.  B )
)  /\  -.  X  =  v )  ->  V  e.  ( X L v ) )
6261ex 434 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
( -.  X  =  v  ->  V  e.  ( X L v ) ) )
6362orrd 378 . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
( X  =  v  \/  V  e.  ( X L v ) ) )
6463orcomd 388 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  -> 
( V  e.  ( X L v )  \/  X  =  v ) )
651, 2, 3, 4, 5, 7, 23, 18, 20, 11, 46, 48, 64ragcol 23115 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  <" v X u ">  e.  (∟G `  G ) )
661, 2, 3, 4, 5, 7, 11, 18, 20, 65ragcom 23114 . . 3  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  B ) )  ->  <" u X v ">  e.  (∟G `  G ) )
6766ralrimivva 2829 . 2  |-  ( ph  ->  A. u  e.  A  A. v  e.  B  <" u X v ">  e.  (∟G `  G ) )
681, 2, 3, 4, 6, 12, 8, 15isperp2 23128 . 2  |-  ( ph  ->  ( A (⟂G `  G
) B  <->  A. u  e.  A  A. v  e.  B  <" u X v ">  e.  (∟G `  G )
) )
6967, 68mpbird 232 1  |-  ( ph  ->  A (⟂G `  G
) B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736    i^i cin 3348   class class class wbr 4313   ran crn 4862   ` cfv 5439  (class class class)co 6112   <"cs3 12490   Basecbs 14195   distcds 14268  TarskiGcstrkg 22911  Itvcitv 22919  LineGclng 22920  pInvGcmir 23077  ∟Gcrag 23109  ⟂Gcperpg 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-fz 11459  df-fzo 11570  df-hash 12125  df-word 12250  df-concat 12252  df-s1 12253  df-s2 12496  df-s3 12497  df-trkgc 22931  df-trkgb 22932  df-trkgcb 22933  df-trkg 22938  df-cgrg 22986  df-mir 23078  df-rag 23110  df-perpg 23112
This theorem is referenced by:  footex  23131
  Copyright terms: Public domain W3C validator