MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem1 Structured version   Visualization version   Unicode version

Theorem radcnvlem1 23368
Description: Lemma for radcnvlt1 23373, radcnvle 23375. If  X is a point closer to zero than  Y and the power series converges at 
Y, then it converges absolutely at 
X, even if the terms in the sequence are multiplied by  n. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
psergf.x  |-  ( ph  ->  X  e.  CC )
radcnvlem2.y  |-  ( ph  ->  Y  e.  CC )
radcnvlem2.a  |-  ( ph  ->  ( abs `  X
)  <  ( abs `  Y ) )
radcnvlem2.c  |-  ( ph  ->  seq 0 (  +  ,  ( G `  Y ) )  e. 
dom 
~~>  )
radcnvlem1.h  |-  H  =  ( m  e.  NN0  |->  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) ) )
Assertion
Ref Expression
radcnvlem1  |-  ( ph  ->  seq 0 (  +  ,  H )  e. 
dom 
~~>  )
Distinct variable groups:    m, n, x, A    m, H    ph, m    m, X    m, G    m, Y
Allowed substitution hints:    ph( x, n)    G( x, n)    H( x, n)    X( x, n)    Y( x, n)

Proof of Theorem radcnvlem1
Dummy variables  i 
k  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11193 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10949 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 1rp 11306 . . . 4  |-  1  e.  RR+
43a1i 11 . . 3  |-  ( ph  ->  1  e.  RR+ )
5 radcnvlem2.y . . . 4  |-  ( ph  ->  Y  e.  CC )
6 pser.g . . . . 5  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
76pserval2 23366 . . . 4  |-  ( ( Y  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  Y ) `  k
)  =  ( ( A `  k )  x.  ( Y ^
k ) ) )
85, 7sylan 474 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  Y ) `  k )  =  ( ( A `  k
)  x.  ( Y ^ k ) ) )
9 fvex 5875 . . . . 5  |-  ( G `
 Y )  e. 
_V
109a1i 11 . . . 4  |-  ( ph  ->  ( G `  Y
)  e.  _V )
11 radcnvlem2.c . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( G `  Y ) )  e. 
dom 
~~>  )
12 radcnv.a . . . . . 6  |-  ( ph  ->  A : NN0 --> CC )
136, 12, 5psergf 23367 . . . . 5  |-  ( ph  ->  ( G `  Y
) : NN0 --> CC )
1413ffvelrnda 6022 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  Y ) `  k )  e.  CC )
151, 2, 10, 11, 14serf0 13747 . . 3  |-  ( ph  ->  ( G `  Y
)  ~~>  0 )
161, 2, 4, 8, 15climi0 13576 . 2  |-  ( ph  ->  E. j  e.  NN0  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 )
17 simprl 764 . . 3  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  j  e.  NN0 )
18 nn0re 10878 . . . . . . 7  |-  ( i  e.  NN0  ->  i  e.  RR )
1918adantl 468 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  i  e. 
NN0 )  ->  i  e.  RR )
20 psergf.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
2120adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  X  e.  CC )
2221abscld 13498 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( abs `  X )  e.  RR )
235adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  Y  e.  CC )
2423abscld 13498 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( abs `  Y )  e.  RR )
25 0red 9644 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
2620abscld 13498 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  X
)  e.  RR )
275abscld 13498 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  Y
)  e.  RR )
2820absge0d 13506 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( abs `  X ) )
29 radcnvlem2.a . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  X
)  <  ( abs `  Y ) )
3025, 26, 27, 28, 29lelttrd 9793 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( abs `  Y ) )
3130gt0ne0d 10178 . . . . . . . . 9  |-  ( ph  ->  ( abs `  Y
)  =/=  0 )
3231adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( abs `  Y )  =/=  0
)
3322, 24, 32redivcld 10435 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( ( abs `  X )  / 
( abs `  Y
) )  e.  RR )
34 reexpcl 12289 . . . . . . 7  |-  ( ( ( ( abs `  X
)  /  ( abs `  Y ) )  e.  RR  /\  i  e. 
NN0 )  ->  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
i )  e.  RR )
3533, 34sylan 474 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  i  e. 
NN0 )  ->  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
i )  e.  RR )
3619, 35remulcld 9671 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  i  e. 
NN0 )  ->  (
i  x.  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
i ) )  e.  RR )
37 eqid 2451 . . . . 5  |-  ( i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ i
) ) )  =  ( i  e.  NN0  |->  ( i  x.  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
i ) ) )
3836, 37fmptd 6046 . . . 4  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y ) ) ^ i ) ) ) : NN0 --> RR )
3938ffvelrnda 6022 . . 3  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e. 
NN0 )  ->  (
( i  e.  NN0  |->  ( i  x.  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
i ) ) ) `
 m )  e.  RR )
40 nn0re 10878 . . . . . . . . 9  |-  ( m  e.  NN0  ->  m  e.  RR )
4140adantl 468 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  RR )
426, 12, 20psergf 23367 . . . . . . . . . 10  |-  ( ph  ->  ( G `  X
) : NN0 --> CC )
4342ffvelrnda 6022 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( G `  X ) `  m )  e.  CC )
4443abscld 13498 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( abs `  ( ( G `  X ) `  m
) )  e.  RR )
4541, 44remulcld 9671 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  x.  ( abs `  (
( G `  X
) `  m )
) )  e.  RR )
46 radcnvlem1.h . . . . . . 7  |-  H  =  ( m  e.  NN0  |->  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) ) )
4745, 46fmptd 6046 . . . . . 6  |-  ( ph  ->  H : NN0 --> RR )
4847adantr 467 . . . . 5  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  H : NN0
--> RR )
4948ffvelrnda 6022 . . . 4  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e. 
NN0 )  ->  ( H `  m )  e.  RR )
5049recnd 9669 . . 3  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e. 
NN0 )  ->  ( H `  m )  e.  CC )
5126, 27, 31redivcld 10435 . . . . . 6  |-  ( ph  ->  ( ( abs `  X
)  /  ( abs `  Y ) )  e.  RR )
5251recnd 9669 . . . . 5  |-  ( ph  ->  ( ( abs `  X
)  /  ( abs `  Y ) )  e.  CC )
53 divge0 10474 . . . . . . . 8  |-  ( ( ( ( abs `  X
)  e.  RR  /\  0  <_  ( abs `  X
) )  /\  (
( abs `  Y
)  e.  RR  /\  0  <  ( abs `  Y
) ) )  -> 
0  <_  ( ( abs `  X )  / 
( abs `  Y
) ) )
5426, 28, 27, 30, 53syl22anc 1269 . . . . . . 7  |-  ( ph  ->  0  <_  ( ( abs `  X )  / 
( abs `  Y
) ) )
5551, 54absidd 13484 . . . . . 6  |-  ( ph  ->  ( abs `  (
( abs `  X
)  /  ( abs `  Y ) ) )  =  ( ( abs `  X )  /  ( abs `  Y ) ) )
5627recnd 9669 . . . . . . . . 9  |-  ( ph  ->  ( abs `  Y
)  e.  CC )
5756mulid1d 9660 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  Y
)  x.  1 )  =  ( abs `  Y
) )
5829, 57breqtrrd 4429 . . . . . . 7  |-  ( ph  ->  ( abs `  X
)  <  ( ( abs `  Y )  x.  1 ) )
59 1red 9658 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
60 ltdivmul 10480 . . . . . . . 8  |-  ( ( ( abs `  X
)  e.  RR  /\  1  e.  RR  /\  (
( abs `  Y
)  e.  RR  /\  0  <  ( abs `  Y
) ) )  -> 
( ( ( abs `  X )  /  ( abs `  Y ) )  <  1  <->  ( abs `  X )  <  (
( abs `  Y
)  x.  1 ) ) )
6126, 59, 27, 30, 60syl112anc 1272 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  X )  /  ( abs `  Y ) )  <  1  <->  ( abs `  X )  <  (
( abs `  Y
)  x.  1 ) ) )
6258, 61mpbird 236 . . . . . 6  |-  ( ph  ->  ( ( abs `  X
)  /  ( abs `  Y ) )  <  1 )
6355, 62eqbrtrd 4423 . . . . 5  |-  ( ph  ->  ( abs `  (
( abs `  X
)  /  ( abs `  Y ) ) )  <  1 )
6437geomulcvg 13932 . . . . 5  |-  ( ( ( ( abs `  X
)  /  ( abs `  Y ) )  e.  CC  /\  ( abs `  ( ( abs `  X
)  /  ( abs `  Y ) ) )  <  1 )  ->  seq 0 (  +  , 
( i  e.  NN0  |->  ( i  x.  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
i ) ) ) )  e.  dom  ~~>  )
6552, 63, 64syl2anc 667 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( i  e. 
NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y ) ) ^ i ) ) ) )  e.  dom  ~~>  )
6665adantr 467 . . 3  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  seq 0
(  +  ,  ( i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ i
) ) ) )  e.  dom  ~~>  )
67 1red 9658 . . 3  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  1  e.  RR )
6842ad2antrr 732 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( G `  X ) : NN0 --> CC )
69 eluznn0 11228 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN0 )
7017, 69sylan 474 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  m  e.  NN0 )
7168, 70ffvelrnd 6023 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( G `  X ) `  m )  e.  CC )
7271abscld 13498 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( G `  X ) `  m
) )  e.  RR )
7333adantr 467 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X )  / 
( abs `  Y
) )  e.  RR )
7473, 70reexpcld 12433 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( (
( abs `  X
)  /  ( abs `  Y ) ) ^
m )  e.  RR )
7570nn0red 10926 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  m  e.  RR )
7670nn0ge0d 10928 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <_  m )
7712ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  A : NN0
--> CC )
7877, 70ffvelrnd 6023 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( A `  m )  e.  CC )
795ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  Y  e.  CC )
8079, 70expcld 12416 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( Y ^ m )  e.  CC )
8178, 80mulcld 9663 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( A `  m )  x.  ( Y ^ m
) )  e.  CC )
8281abscld 13498 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( A `  m )  x.  ( Y ^ m ) ) )  e.  RR )
83 1red 9658 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
8420ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  X  e.  CC )
8584abscld 13498 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  X )  e.  RR )
8685, 70reexpcld 12433 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
m )  e.  RR )
8784absge0d 13506 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  X ) )
8885, 70, 87expge0d 12434 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <_  ( ( abs `  X
) ^ m ) )
89 simprr 766 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 )
90 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  ( A `  k )  =  ( A `  m ) )
91 oveq2 6298 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  ( Y ^ k )  =  ( Y ^ m
) )
9290, 91oveq12d 6308 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( A `  k
)  x.  ( Y ^ k ) )  =  ( ( A `
 m )  x.  ( Y ^ m
) ) )
9392fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( abs `  ( ( A `
 k )  x.  ( Y ^ k
) ) )  =  ( abs `  (
( A `  m
)  x.  ( Y ^ m ) ) ) )
9493breq1d 4412 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1  <->  ( abs `  ( ( A `
 m )  x.  ( Y ^ m
) ) )  <  1 ) )
9594rspccva 3149 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^
k ) ) )  <  1  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( A `  m )  x.  ( Y ^ m ) ) )  <  1 )
9689, 95sylan 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( A `  m )  x.  ( Y ^ m ) ) )  <  1 )
97 1re 9642 . . . . . . . . . . . 12  |-  1  e.  RR
98 ltle 9722 . . . . . . . . . . . 12  |-  ( ( ( abs `  (
( A `  m
)  x.  ( Y ^ m ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (
( A `  m
)  x.  ( Y ^ m ) ) )  <  1  -> 
( abs `  (
( A `  m
)  x.  ( Y ^ m ) ) )  <_  1 ) )
9982, 97, 98sylancl 668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( A `
 m )  x.  ( Y ^ m
) ) )  <  1  ->  ( abs `  ( ( A `  m )  x.  ( Y ^ m ) ) )  <_  1 ) )
10096, 99mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( A `  m )  x.  ( Y ^ m ) ) )  <_  1 )
10182, 83, 86, 88, 100lemul1ad 10546 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( A `
 m )  x.  ( Y ^ m
) ) )  x.  ( ( abs `  X
) ^ m ) )  <_  ( 1  x.  ( ( abs `  X ) ^ m
) ) )
10284, 70expcld 12416 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( X ^ m )  e.  CC )
10378, 102mulcld 9663 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( A `  m )  x.  ( X ^ m
) )  e.  CC )
104103, 80absmuld 13516 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( ( A `
 m )  x.  ( X ^ m
) )  x.  ( Y ^ m ) ) )  =  ( ( abs `  ( ( A `  m )  x.  ( X ^
m ) ) )  x.  ( abs `  ( Y ^ m ) ) ) )
10581, 102absmuld 13516 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( ( A `
 m )  x.  ( Y ^ m
) )  x.  ( X ^ m ) ) )  =  ( ( abs `  ( ( A `  m )  x.  ( Y ^
m ) ) )  x.  ( abs `  ( X ^ m ) ) ) )
10678, 80, 102mul32d 9843 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( (
( A `  m
)  x.  ( Y ^ m ) )  x.  ( X ^
m ) )  =  ( ( ( A `
 m )  x.  ( X ^ m
) )  x.  ( Y ^ m ) ) )
107106fveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( ( A `
 m )  x.  ( Y ^ m
) )  x.  ( X ^ m ) ) )  =  ( abs `  ( ( ( A `
 m )  x.  ( X ^ m
) )  x.  ( Y ^ m ) ) ) )
10884, 70absexpd 13514 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( X ^ m
) )  =  ( ( abs `  X
) ^ m ) )
109108oveq2d 6306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( A `
 m )  x.  ( Y ^ m
) ) )  x.  ( abs `  ( X ^ m ) ) )  =  ( ( abs `  ( ( A `  m )  x.  ( Y ^
m ) ) )  x.  ( ( abs `  X ) ^ m
) ) )
110105, 107, 1093eqtr3d 2493 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( ( A `
 m )  x.  ( X ^ m
) )  x.  ( Y ^ m ) ) )  =  ( ( abs `  ( ( A `  m )  x.  ( Y ^
m ) ) )  x.  ( ( abs `  X ) ^ m
) ) )
11179, 70absexpd 13514 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( Y ^ m
) )  =  ( ( abs `  Y
) ^ m ) )
112111oveq2d 6306 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( A `
 m )  x.  ( X ^ m
) ) )  x.  ( abs `  ( Y ^ m ) ) )  =  ( ( abs `  ( ( A `  m )  x.  ( X ^
m ) ) )  x.  ( ( abs `  Y ) ^ m
) ) )
113104, 110, 1123eqtr3d 2493 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( A `
 m )  x.  ( Y ^ m
) ) )  x.  ( ( abs `  X
) ^ m ) )  =  ( ( abs `  ( ( A `  m )  x.  ( X ^
m ) ) )  x.  ( ( abs `  Y ) ^ m
) ) )
11486recnd 9669 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
m )  e.  CC )
115114mulid2d 9661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( abs `  X ) ^ m
) )  =  ( ( abs `  X
) ^ m ) )
116101, 113, 1153brtr3d 4432 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( A `
 m )  x.  ( X ^ m
) ) )  x.  ( ( abs `  Y
) ^ m ) )  <_  ( ( abs `  X ) ^
m ) )
117103abscld 13498 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( A `  m )  x.  ( X ^ m ) ) )  e.  RR )
11824adantr 467 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  Y )  e.  RR )
119118, 70reexpcld 12433 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  Y ) ^
m )  e.  RR )
120 eluzelz 11168 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
121120adantl 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  m  e.  ZZ )
12230ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <  ( abs `  Y ) )
123 expgt0 12305 . . . . . . . . . 10  |-  ( ( ( abs `  Y
)  e.  RR  /\  m  e.  ZZ  /\  0  <  ( abs `  Y
) )  ->  0  <  ( ( abs `  Y
) ^ m ) )
124118, 121, 122, 123syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <  ( ( abs `  Y
) ^ m ) )
125 lemuldiv 10486 . . . . . . . . 9  |-  ( ( ( abs `  (
( A `  m
)  x.  ( X ^ m ) ) )  e.  RR  /\  ( ( abs `  X
) ^ m )  e.  RR  /\  (
( ( abs `  Y
) ^ m )  e.  RR  /\  0  <  ( ( abs `  Y
) ^ m ) ) )  ->  (
( ( abs `  (
( A `  m
)  x.  ( X ^ m ) ) )  x.  ( ( abs `  Y ) ^ m ) )  <_  ( ( abs `  X ) ^ m
)  <->  ( abs `  (
( A `  m
)  x.  ( X ^ m ) ) )  <_  ( (
( abs `  X
) ^ m )  /  ( ( abs `  Y ) ^ m
) ) ) )
126117, 86, 119, 124, 125syl112anc 1272 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( (
( abs `  (
( A `  m
)  x.  ( X ^ m ) ) )  x.  ( ( abs `  Y ) ^ m ) )  <_  ( ( abs `  X ) ^ m
)  <->  ( abs `  (
( A `  m
)  x.  ( X ^ m ) ) )  <_  ( (
( abs `  X
) ^ m )  /  ( ( abs `  Y ) ^ m
) ) ) )
127116, 126mpbid 214 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( A `  m )  x.  ( X ^ m ) ) )  <_  ( (
( abs `  X
) ^ m )  /  ( ( abs `  Y ) ^ m
) ) )
1286pserval2 23366 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  m  e.  NN0 )  -> 
( ( G `  X ) `  m
)  =  ( ( A `  m )  x.  ( X ^
m ) ) )
12984, 70, 128syl2anc 667 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( ( G `  X ) `  m )  =  ( ( A `  m
)  x.  ( X ^ m ) ) )
130129fveq2d 5869 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( G `  X ) `  m
) )  =  ( abs `  ( ( A `  m )  x.  ( X ^
m ) ) ) )
13122recnd 9669 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( abs `  X )  e.  CC )
132131adantr 467 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  X )  e.  CC )
13324recnd 9669 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  ( abs `  Y )  e.  CC )
134133adantr 467 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  Y )  e.  CC )
13531ad2antrr 732 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  Y )  =/=  0
)
136132, 134, 135, 70expdivd 12430 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( (
( abs `  X
)  /  ( abs `  Y ) ) ^
m )  =  ( ( ( abs `  X
) ^ m )  /  ( ( abs `  Y ) ^ m
) ) )
137127, 130, 1363brtr4d 4433 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( G `  X ) `  m
) )  <_  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) )
13872, 74, 75, 76, 137lemul2ad 10547 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( m  x.  ( abs `  (
( G `  X
) `  m )
) )  <_  (
m  x.  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) ) )
13975, 72remulcld 9671 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( m  x.  ( abs `  (
( G `  X
) `  m )
) )  e.  RR )
14071absge0d 13506 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  ( ( G `  X ) `
 m ) ) )
14175, 72, 76, 140mulge0d 10190 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  0  <_  ( m  x.  ( abs `  ( ( G `  X ) `  m
) ) ) )
142139, 141absidd 13484 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) ) )  =  ( m  x.  ( abs `  (
( G `  X
) `  m )
) ) )
14375, 74remulcld 9671 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( m  x.  ( ( ( abs `  X )  /  ( abs `  Y ) ) ^ m ) )  e.  RR )
144143recnd 9669 . . . . . 6  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( m  x.  ( ( ( abs `  X )  /  ( abs `  Y ) ) ^ m ) )  e.  CC )
145144mulid2d 9661 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( m  x.  ( ( ( abs `  X )  /  ( abs `  Y ) ) ^ m ) ) )  =  ( m  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ m
) ) )
146138, 142, 1453brtr4d 4433 . . . 4  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) ) )  <_  ( 1  x.  ( m  x.  ( ( ( abs `  X )  /  ( abs `  Y ) ) ^ m ) ) ) )
147 ovex 6318 . . . . . 6  |-  ( m  x.  ( abs `  (
( G `  X
) `  m )
) )  e.  _V
14846fvmpt2 5957 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( m  x.  ( abs `  ( ( G `
 X ) `  m ) ) )  e.  _V )  -> 
( H `  m
)  =  ( m  x.  ( abs `  (
( G `  X
) `  m )
) ) )
14970, 147, 148sylancl 668 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( H `  m )  =  ( m  x.  ( abs `  ( ( G `  X ) `  m
) ) ) )
150149fveq2d 5869 . . . 4  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( H `  m
) )  =  ( abs `  ( m  x.  ( abs `  (
( G `  X
) `  m )
) ) ) )
151 id 22 . . . . . . . 8  |-  ( i  =  m  ->  i  =  m )
152 oveq2 6298 . . . . . . . 8  |-  ( i  =  m  ->  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
i )  =  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) )
153151, 152oveq12d 6308 . . . . . . 7  |-  ( i  =  m  ->  (
i  x.  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
i ) )  =  ( m  x.  (
( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) ) )
154 ovex 6318 . . . . . . 7  |-  ( m  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ m
) )  e.  _V
155153, 37, 154fvmpt 5948 . . . . . 6  |-  ( m  e.  NN0  ->  ( ( i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ i
) ) ) `  m )  =  ( m  x.  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) ) )
15670, 155syl 17 . . . . 5  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( (
i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ i
) ) ) `  m )  =  ( m  x.  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) ) )
157156oveq2d 6306 . . . 4  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ i
) ) ) `  m ) )  =  ( 1  x.  (
m  x.  ( ( ( abs `  X
)  /  ( abs `  Y ) ) ^
m ) ) ) )
158146, 150, 1573brtr4d 4433 . . 3  |-  ( ( ( ph  /\  (
j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( A `  k )  x.  ( Y ^ k ) ) )  <  1 ) )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( H `  m
) )  <_  (
1  x.  ( ( i  e.  NN0  |->  ( i  x.  ( ( ( abs `  X )  /  ( abs `  Y
) ) ^ i
) ) ) `  m ) ) )
1591, 17, 39, 50, 66, 67, 158cvgcmpce 13878 . 2  |-  ( (
ph  /\  ( j  e.  NN0  /\  A. k  e.  ( ZZ>= `  j )
( abs `  (
( A `  k
)  x.  ( Y ^ k ) ) )  <  1 ) )  ->  seq 0
(  +  ,  H
)  e.  dom  ~~>  )
16016, 159rexlimddv 2883 1  |-  ( ph  ->  seq 0 (  +  ,  H )  e. 
dom 
~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   _Vcvv 3045   class class class wbr 4402    |-> cmpt 4461   dom cdm 4834   -->wf 5578   ` cfv 5582  (class class class)co 6290   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    / cdiv 10269   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302    seqcseq 12213   ^cexp 12272   abscabs 13297    ~~> cli 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-ico 11641  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753
This theorem is referenced by:  radcnvlem2  23369  radcnvlt1  23373
  Copyright terms: Public domain W3C validator