MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvcl Structured version   Unicode version

Theorem radcnvcl 22025
Description: The radius of convergence  R of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
radcnv.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
Assertion
Ref Expression
radcnvcl  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
Distinct variable groups:    x, n, A    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    R( x, n, r)    G( x, n)

Proof of Theorem radcnvcl
StepHypRef Expression
1 radcnv.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
2 ssrab2 3548 . . . . 5  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR
3 ressxr 9542 . . . . 5  |-  RR  C_  RR*
42, 3sstri 3476 . . . 4  |-  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR*
5 supxrcl 11392 . . . 4  |-  ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } 
C_  RR*  ->  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR* )
64, 5mp1i 12 . . 3  |-  ( ph  ->  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR* )
71, 6syl5eqel 2546 . 2  |-  ( ph  ->  R  e.  RR* )
8 pser.g . . . . 5  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
9 radcnv.a . . . . 5  |-  ( ph  ->  A : NN0 --> CC )
108, 9radcnv0 22024 . . . 4  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
11 supxrub 11402 . . . 4  |-  ( ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  }  C_  RR*  /\  0  e.  { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  } )  ->  0  <_  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
)
124, 10, 11sylancr 663 . . 3  |-  ( ph  ->  0  <_  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( G `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  ) )
1312, 1syl6breqr 4443 . 2  |-  ( ph  ->  0  <_  R )
14 pnfge 11225 . . 3  |-  ( R  e.  RR*  ->  R  <_ +oo )
157, 14syl 16 . 2  |-  ( ph  ->  R  <_ +oo )
16 0xr 9545 . . 3  |-  0  e.  RR*
17 pnfxr 11207 . . 3  |- +oo  e.  RR*
18 elicc1 11459 . . 3  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  ( R  e.  ( 0 [,] +oo )  <->  ( R  e.  RR*  /\  0  <_  R  /\  R  <_ +oo )
) )
1916, 17, 18mp2an 672 . 2  |-  ( R  e.  ( 0 [,] +oo )  <->  ( R  e. 
RR*  /\  0  <_  R  /\  R  <_ +oo )
)
207, 13, 15, 19syl3anbrc 1172 1  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758   {crab 2803    C_ wss 3439   class class class wbr 4403    |-> cmpt 4461   dom cdm 4951   -->wf 5525   ` cfv 5529  (class class class)co 6203   supcsup 7805   CCcc 9395   RRcr 9396   0cc0 9397    + caddc 9400    x. cmul 9402   +oocpnf 9530   RR*cxr 9532    < clt 9533    <_ cle 9534   NN0cn0 10694   [,]cicc 11418    seqcseq 11927   ^cexp 11986    ~~> cli 13084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7806  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-n0 10695  df-z 10762  df-uz 10977  df-rp 11107  df-icc 11422  df-fz 11559  df-seq 11928  df-exp 11987  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-clim 13088
This theorem is referenced by:  radcnvlt1  22026  radcnvle  22028  pserulm  22030  psercnlem2  22032  psercnlem1  22033  psercn  22034  pserdvlem1  22035  pserdvlem2  22036  abelthlem3  22041  abelth  22049  logtayl  22248
  Copyright terms: Public domain W3C validator