MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Unicode version

Theorem radcnv0 22538
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
Assertion
Ref Expression
radcnv0  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
Distinct variable groups:    x, n, A    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    G( x, n)

Proof of Theorem radcnv0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0red 9586 . 2  |-  ( ph  ->  0  e.  RR )
2 nn0uz 11105 . . 3  |-  NN0  =  ( ZZ>= `  0 )
3 0zd 10865 . . 3  |-  ( ph  ->  0  e.  ZZ )
4 snfi 7586 . . . 4  |-  { 0 }  e.  Fin
54a1i 11 . . 3  |-  ( ph  ->  { 0 }  e.  Fin )
6 0nn0 10799 . . . . 5  |-  0  e.  NN0
76a1i 11 . . . 4  |-  ( ph  ->  0  e.  NN0 )
87snssd 4165 . . 3  |-  ( ph  ->  { 0 }  C_  NN0 )
9 ifid 3969 . . . 4  |-  if ( k  e.  { 0 } ,  ( ( G `  0 ) `
 k ) ,  ( ( G ` 
0 ) `  k
) )  =  ( ( G `  0
) `  k )
10 0cnd 9578 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
11 pser.g . . . . . . . . 9  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1211pserval2 22533 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  k  e.  NN0 )  -> 
( ( G ` 
0 ) `  k
)  =  ( ( A `  k )  x.  ( 0 ^ k ) ) )
1310, 12sylan 471 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  =  ( ( A `  k
)  x.  ( 0 ^ k ) ) )
1413adantr 465 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( G `  0
) `  k )  =  ( ( A `
 k )  x.  ( 0 ^ k
) ) )
15 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
16 elnn0 10786 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
1715, 16sylib 196 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  e.  NN  \/  k  =  0 ) )
1817ord 377 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  NN  ->  k  =  0 ) )
19 elsn 4034 . . . . . . . . . . 11  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2018, 19syl6ibr 227 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  NN  ->  k  e.  { 0 } ) )
2120con1d 124 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  { 0 }  ->  k  e.  NN ) )
2221imp 429 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  k  e.  NN )
23220expd 12281 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
0 ^ k )  =  0 )
2423oveq2d 6291 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 k )  x.  0 ) )
25 radcnv.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
2625ffvelrnda 6012 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
2726adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  ( A `  k )  e.  CC )
2827mul01d 9767 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( A `  k
)  x.  0 )  =  0 )
2914, 24, 283eqtrd 2505 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( G `  0
) `  k )  =  0 )
3029ifeq2da 3963 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  { 0 } ,  ( ( G `  0 ) `
 k ) ,  ( ( G ` 
0 ) `  k
) )  =  if ( k  e.  {
0 } ,  ( ( G `  0
) `  k ) ,  0 ) )
319, 30syl5eqr 2515 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  =  if ( k  e.  {
0 } ,  ( ( G `  0
) `  k ) ,  0 ) )
328sselda 3497 . . . 4  |-  ( (
ph  /\  k  e.  { 0 } )  -> 
k  e.  NN0 )
3311, 25, 10psergf 22534 . . . . 5  |-  ( ph  ->  ( G `  0
) : NN0 --> CC )
3433ffvelrnda 6012 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  e.  CC )
3532, 34syldan 470 . . 3  |-  ( (
ph  /\  k  e.  { 0 } )  -> 
( ( G ` 
0 ) `  k
)  e.  CC )
362, 3, 5, 8, 31, 35fsumcvg3 13500 . 2  |-  ( ph  ->  seq 0 (  +  ,  ( G ` 
0 ) )  e. 
dom 
~~>  )
37 fveq2 5857 . . . . 5  |-  ( r  =  0  ->  ( G `  r )  =  ( G ` 
0 ) )
3837seqeq3d 12071 . . . 4  |-  ( r  =  0  ->  seq 0 (  +  , 
( G `  r
) )  =  seq 0 (  +  , 
( G `  0
) ) )
3938eleq1d 2529 . . 3  |-  ( r  =  0  ->  (  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( G `  0
) )  e.  dom  ~~>  ) )
4039elrab 3254 . 2  |-  ( 0  e.  { r  e.  RR  |  seq 0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  }  <->  ( 0  e.  RR  /\  seq 0 (  +  , 
( G `  0
) )  e.  dom  ~~>  ) )
411, 36, 40sylanbrc 664 1  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762   {crab 2811   ifcif 3932   {csn 4020    |-> cmpt 4498   dom cdm 4992   -->wf 5575   ` cfv 5579  (class class class)co 6275   Fincfn 7506   CCcc 9479   RRcr 9480   0cc0 9481    + caddc 9484    x. cmul 9486   NNcn 10525   NN0cn0 10784    seqcseq 12063   ^cexp 12122    ~~> cli 13256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260
This theorem is referenced by:  radcnvcl  22539
  Copyright terms: Public domain W3C validator