MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Unicode version

Theorem radcnv0 23103
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
Assertion
Ref Expression
radcnv0  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
Distinct variable groups:    x, n, A    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    G( x, n)

Proof of Theorem radcnv0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0red 9627 . 2  |-  ( ph  ->  0  e.  RR )
2 nn0uz 11161 . . 3  |-  NN0  =  ( ZZ>= `  0 )
3 0zd 10917 . . 3  |-  ( ph  ->  0  e.  ZZ )
4 snfi 7634 . . . 4  |-  { 0 }  e.  Fin
54a1i 11 . . 3  |-  ( ph  ->  { 0 }  e.  Fin )
6 0nn0 10851 . . . . 5  |-  0  e.  NN0
76a1i 11 . . . 4  |-  ( ph  ->  0  e.  NN0 )
87snssd 4117 . . 3  |-  ( ph  ->  { 0 }  C_  NN0 )
9 ifid 3922 . . . 4  |-  if ( k  e.  { 0 } ,  ( ( G `  0 ) `
 k ) ,  ( ( G ` 
0 ) `  k
) )  =  ( ( G `  0
) `  k )
10 0cnd 9619 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
11 pser.g . . . . . . . . 9  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1211pserval2 23098 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  k  e.  NN0 )  -> 
( ( G ` 
0 ) `  k
)  =  ( ( A `  k )  x.  ( 0 ^ k ) ) )
1310, 12sylan 469 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  =  ( ( A `  k
)  x.  ( 0 ^ k ) ) )
1413adantr 463 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( G `  0
) `  k )  =  ( ( A `
 k )  x.  ( 0 ^ k
) ) )
15 simpr 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
16 elnn0 10838 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
1715, 16sylib 196 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  e.  NN  \/  k  =  0 ) )
1817ord 375 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  NN  ->  k  =  0 ) )
19 elsn 3986 . . . . . . . . . . 11  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2018, 19syl6ibr 227 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  NN  ->  k  e.  { 0 } ) )
2120con1d 124 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  { 0 }  ->  k  e.  NN ) )
2221imp 427 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  k  e.  NN )
23220expd 12370 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
0 ^ k )  =  0 )
2423oveq2d 6294 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 k )  x.  0 ) )
25 radcnv.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
2625ffvelrnda 6009 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
2726adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  ( A `  k )  e.  CC )
2827mul01d 9813 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( A `  k
)  x.  0 )  =  0 )
2914, 24, 283eqtrd 2447 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( G `  0
) `  k )  =  0 )
3029ifeq2da 3916 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  { 0 } ,  ( ( G `  0 ) `
 k ) ,  ( ( G ` 
0 ) `  k
) )  =  if ( k  e.  {
0 } ,  ( ( G `  0
) `  k ) ,  0 ) )
319, 30syl5eqr 2457 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  =  if ( k  e.  {
0 } ,  ( ( G `  0
) `  k ) ,  0 ) )
328sselda 3442 . . . 4  |-  ( (
ph  /\  k  e.  { 0 } )  -> 
k  e.  NN0 )
3311, 25, 10psergf 23099 . . . . 5  |-  ( ph  ->  ( G `  0
) : NN0 --> CC )
3433ffvelrnda 6009 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  e.  CC )
3532, 34syldan 468 . . 3  |-  ( (
ph  /\  k  e.  { 0 } )  -> 
( ( G ` 
0 ) `  k
)  e.  CC )
362, 3, 5, 8, 31, 35fsumcvg3 13700 . 2  |-  ( ph  ->  seq 0 (  +  ,  ( G ` 
0 ) )  e. 
dom 
~~>  )
37 fveq2 5849 . . . . 5  |-  ( r  =  0  ->  ( G `  r )  =  ( G ` 
0 ) )
3837seqeq3d 12159 . . . 4  |-  ( r  =  0  ->  seq 0 (  +  , 
( G `  r
) )  =  seq 0 (  +  , 
( G `  0
) ) )
3938eleq1d 2471 . . 3  |-  ( r  =  0  ->  (  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( G `  0
) )  e.  dom  ~~>  ) )
4039elrab 3207 . 2  |-  ( 0  e.  { r  e.  RR  |  seq 0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  }  <->  ( 0  e.  RR  /\  seq 0 (  +  , 
( G `  0
) )  e.  dom  ~~>  ) )
411, 36, 40sylanbrc 662 1  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   {crab 2758   ifcif 3885   {csn 3972    |-> cmpt 4453   dom cdm 4823   -->wf 5565   ` cfv 5569  (class class class)co 6278   Fincfn 7554   CCcc 9520   RRcr 9521   0cc0 9522    + caddc 9525    x. cmul 9527   NNcn 10576   NN0cn0 10836    seqcseq 12151   ^cexp 12210    ~~> cli 13456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-rp 11266  df-fz 11727  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460
This theorem is referenced by:  radcnvcl  23104  radcnvrat  36043
  Copyright terms: Public domain W3C validator