Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Visualization version   Unicode version

Theorem rabren3dioph 35704
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a  |-  ( ( ( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) )  ->  ( ph  <->  ps )
)
rabren3dioph.b  |-  X  e.  ( 1 ... N
)
rabren3dioph.c  |-  Y  e.  ( 1 ... N
)
rabren3dioph.d  |-  Z  e.  ( 1 ... N
)
Assertion
Ref Expression
rabren3dioph  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  ps }  e.  (Dioph `  N ) )
Distinct variable groups:    ps, a    ph, b    X, a, b    Y, a, b    Z, a, b    N, a, b
Allowed substitution hints:    ph( a)    ps( b)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3060 . . . . . 6  |-  b  e. 
_V
2 tpex 6622 . . . . . 6  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. }  e.  _V
31, 2coex 6777 . . . . 5  |-  ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  e. 
_V
4 1ne2 10856 . . . . . . . . . . 11  |-  1  =/=  2
5 1re 9673 . . . . . . . . . . . 12  |-  1  e.  RR
6 1lt3 10812 . . . . . . . . . . . 12  |-  1  <  3
75, 6ltneii 9778 . . . . . . . . . . 11  |-  1  =/=  3
8 2re 10712 . . . . . . . . . . . 12  |-  2  e.  RR
9 2lt3 10811 . . . . . . . . . . . 12  |-  2  <  3
108, 9ltneii 9778 . . . . . . . . . . 11  |-  2  =/=  3
11 1ex 9669 . . . . . . . . . . . 12  |-  1  e.  _V
12 2ex 10714 . . . . . . . . . . . 12  |-  2  e.  _V
13 3ex 10718 . . . . . . . . . . . 12  |-  3  e.  _V
14 rabren3dioph.b . . . . . . . . . . . . 13  |-  X  e.  ( 1 ... N
)
1514elexi 3067 . . . . . . . . . . . 12  |-  X  e. 
_V
16 rabren3dioph.c . . . . . . . . . . . . 13  |-  Y  e.  ( 1 ... N
)
1716elexi 3067 . . . . . . . . . . . 12  |-  Y  e. 
_V
18 rabren3dioph.d . . . . . . . . . . . . 13  |-  Z  e.  ( 1 ... N
)
1918elexi 3067 . . . . . . . . . . . 12  |-  Z  e. 
_V
2011, 12, 13, 15, 17, 19fntp 5661 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  1  =/=  3  /\  2  =/=  3 )  ->  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  {
1 ,  2 ,  3 } )
214, 7, 10, 20mp3an 1373 . . . . . . . . . 10  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }
2211tpid1 4098 . . . . . . . . . 10  |-  1  e.  { 1 ,  2 ,  3 }
23 fvco2 5968 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  1  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
1 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) ) )
2421, 22, 23mp2an 683 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) )
2511, 15fvtp1 6140 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  1  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 )  =  X )
264, 7, 25mp2an 683 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 )  =  X
2726fveq2i 5895 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) )  =  ( b `
 X )
2824, 27eqtri 2484 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )
2912tpid2 4099 . . . . . . . . . 10  |-  2  e.  { 1 ,  2 ,  3 }
30 fvco2 5968 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  2  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
2 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) ) )
3121, 29, 30mp2an 683 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) )
3212, 17fvtp2 6141 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  2  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 )  =  Y )
334, 10, 32mp2an 683 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 )  =  Y
3433fveq2i 5895 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) )  =  ( b `
 Y )
3531, 34eqtri 2484 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )
3613tpid3 4101 . . . . . . . . . 10  |-  3  e.  { 1 ,  2 ,  3 }
37 fvco2 5968 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  3  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
3 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) ) )
3821, 36, 37mp2an 683 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) )
3913, 19fvtp3 6142 . . . . . . . . . . 11  |-  ( ( 1  =/=  3  /\  2  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 )  =  Z )
407, 10, 39mp2an 683 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 )  =  Z
4140fveq2i 5895 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) )  =  ( b `
 Z )
4238, 41eqtri 2484 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z )
4328, 35, 423pm3.2i 1192 . . . . . . 7  |-  ( ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) )
44 fveq1 5891 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  1 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
1 ) )
4544eqeq1d 2464 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  1
)  =  ( b `
 X )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X ) ) )
46 fveq1 5891 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  2 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
2 ) )
4746eqeq1d 2464 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  2
)  =  ( b `
 Y )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y ) ) )
48 fveq1 5891 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  3 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
3 ) )
4948eqeq1d 2464 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  3
)  =  ( b `
 Z )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) ) )
5045, 47, 493anbi123d 1348 . . . . . . 7  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( ( a ` 
1 )  =  ( b `  X )  /\  ( a ` 
2 )  =  ( b `  Y )  /\  ( a ` 
3 )  =  ( b `  Z ) )  <->  ( ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) ) ) )
5143, 50mpbiri 241 . . . . . 6  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) ) )
52 rabren3dioph.a . . . . . 6  |-  ( ( ( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) )  ->  ( ph  <->  ps )
)
5351, 52syl 17 . . . . 5  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  ( ph 
<->  ps ) )
543, 53sbcie 3314 . . . 4  |-  ( [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph  <->  ps )
5554a1i 11 . . 3  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph  <->  ps ) )
5655rabbiia 3045 . 2  |-  { b  e.  ( NN0  ^m  ( 1 ... N
) )  |  [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph }  =  {
b  e.  ( NN0 
^m  ( 1 ... N ) )  |  ps }
5711, 12, 13, 15, 17, 19, 4, 7, 10ftp 6104 . . . . 5  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : { 1 ,  2 ,  3 } --> { X ,  Y ,  Z }
58 1z 11001 . . . . . . . 8  |-  1  e.  ZZ
59 fztp 11887 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
6058, 59ax-mp 5 . . . . . . 7  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
61 1p2e3 10768 . . . . . . . 8  |-  ( 1  +  2 )  =  3
6261oveq2i 6331 . . . . . . 7  |-  ( 1 ... ( 1  +  2 ) )  =  ( 1 ... 3
)
63 eqidd 2463 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  =  1 )
64 1p1e2 10756 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
6564a1i 11 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  =  2 )
6661a1i 11 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  +  2 )  =  3 )
6763, 65, 66tpeq123d 4079 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 } )
6858, 67ax-mp 5 . . . . . . 7  |-  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 }
6960, 62, 683eqtr3i 2492 . . . . . 6  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
7069feq2i 5747 . . . . 5  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }  <->  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : { 1 ,  2 ,  3 } --> { X ,  Y ,  Z }
)
7157, 70mpbir 214 . . . 4  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }
7214, 16, 183pm3.2i 1192 . . . . 5  |-  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N
)  /\  Z  e.  ( 1 ... N
) )
7315, 17, 19tpss 4150 . . . . 5  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  Z  e.  ( 1 ... N ) )  <->  { X ,  Y ,  Z }  C_  ( 1 ... N ) )
7472, 73mpbi 213 . . . 4  |-  { X ,  Y ,  Z }  C_  ( 1 ... N
)
75 fss 5764 . . . 4  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }  /\  { X ,  Y ,  Z }  C_  ( 1 ... N
) )  ->  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) )
7671, 74, 75mp2an 683 . . 3  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N )
77 rabrenfdioph 35703 . . 3  |-  ( ( N  e.  NN0  /\  {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N )  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  [. ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  / 
a ]. ph }  e.  (Dioph `  N ) )
7876, 77mp3an2 1361 . 2  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  [. ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  / 
a ]. ph }  e.  (Dioph `  N ) )
7956, 78syl5eqelr 2545 1  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  ps }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    =/= wne 2633   {crab 2753   [.wsbc 3279    C_ wss 3416   {ctp 3984   <.cop 3986    o. ccom 4860    Fn wfn 5600   -->wf 5601   ` cfv 5605  (class class class)co 6320    ^m cmap 7503   1c1 9571    + caddc 9573   2c2 10692   3c3 10693   NN0cn0 10903   ZZcz 10971   ...cfz 11819  Diophcdioph 35643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-inf2 8177  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-of 6563  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-map 7505  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-card 8404  df-cda 8629  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-nn 10643  df-2 10701  df-3 10702  df-n0 10904  df-z 10972  df-uz 11194  df-fz 11820  df-hash 12554  df-mzpcl 35611  df-mzp 35612  df-dioph 35644
This theorem is referenced by:  rmxdioph  35917  expdiophlem2  35923
  Copyright terms: Public domain W3C validator