Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabren3dioph Structured version   Unicode version

Theorem rabren3dioph 35628
Description: Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Hypotheses
Ref Expression
rabren3dioph.a  |-  ( ( ( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) )  ->  ( ph  <->  ps )
)
rabren3dioph.b  |-  X  e.  ( 1 ... N
)
rabren3dioph.c  |-  Y  e.  ( 1 ... N
)
rabren3dioph.d  |-  Z  e.  ( 1 ... N
)
Assertion
Ref Expression
rabren3dioph  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  ps }  e.  (Dioph `  N ) )
Distinct variable groups:    ps, a    ph, b    X, a, b    Y, a, b    Z, a, b    N, a, b
Allowed substitution hints:    ph( a)    ps( b)

Proof of Theorem rabren3dioph
StepHypRef Expression
1 vex 3083 . . . . . 6  |-  b  e. 
_V
2 tpex 6605 . . . . . 6  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. }  e.  _V
31, 2coex 6760 . . . . 5  |-  ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  e. 
_V
4 1ne2 10830 . . . . . . . . . . 11  |-  1  =/=  2
5 1re 9650 . . . . . . . . . . . 12  |-  1  e.  RR
6 1lt3 10786 . . . . . . . . . . . 12  |-  1  <  3
75, 6ltneii 9755 . . . . . . . . . . 11  |-  1  =/=  3
8 2re 10687 . . . . . . . . . . . 12  |-  2  e.  RR
9 2lt3 10785 . . . . . . . . . . . 12  |-  2  <  3
108, 9ltneii 9755 . . . . . . . . . . 11  |-  2  =/=  3
11 1ex 9646 . . . . . . . . . . . 12  |-  1  e.  _V
12 2ex 10689 . . . . . . . . . . . 12  |-  2  e.  _V
13 3ex 10693 . . . . . . . . . . . 12  |-  3  e.  _V
14 rabren3dioph.b . . . . . . . . . . . . 13  |-  X  e.  ( 1 ... N
)
1514elexi 3090 . . . . . . . . . . . 12  |-  X  e. 
_V
16 rabren3dioph.c . . . . . . . . . . . . 13  |-  Y  e.  ( 1 ... N
)
1716elexi 3090 . . . . . . . . . . . 12  |-  Y  e. 
_V
18 rabren3dioph.d . . . . . . . . . . . . 13  |-  Z  e.  ( 1 ... N
)
1918elexi 3090 . . . . . . . . . . . 12  |-  Z  e. 
_V
2011, 12, 13, 15, 17, 19fntp 5657 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  1  =/=  3  /\  2  =/=  3 )  ->  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  {
1 ,  2 ,  3 } )
214, 7, 10, 20mp3an 1360 . . . . . . . . . 10  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }
2211tpid1 4113 . . . . . . . . . 10  |-  1  e.  { 1 ,  2 ,  3 }
23 fvco2 5957 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  1  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
1 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) ) )
2421, 22, 23mp2an 676 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) )
2511, 15fvtp1 6127 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  1  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 )  =  X )
264, 7, 25mp2an 676 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 )  =  X
2726fveq2i 5885 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  1 ) )  =  ( b `
 X )
2824, 27eqtri 2451 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )
2912tpid2 4114 . . . . . . . . . 10  |-  2  e.  { 1 ,  2 ,  3 }
30 fvco2 5957 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  2  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
2 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) ) )
3121, 29, 30mp2an 676 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) )
3212, 17fvtp2 6128 . . . . . . . . . . 11  |-  ( ( 1  =/=  2  /\  2  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 )  =  Y )
334, 10, 32mp2an 676 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 )  =  Y
3433fveq2i 5885 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  2 ) )  =  ( b `
 Y )
3531, 34eqtri 2451 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )
3613tpid3 4116 . . . . . . . . . 10  |-  3  e.  { 1 ,  2 ,  3 }
37 fvco2 5957 . . . . . . . . . 10  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. }  Fn  { 1 ,  2 ,  3 }  /\  3  e. 
{ 1 ,  2 ,  3 } )  ->  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
3 )  =  ( b `  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) ) )
3821, 36, 37mp2an 676 . . . . . . . . 9  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) )
3913, 19fvtp3 6129 . . . . . . . . . . 11  |-  ( ( 1  =/=  3  /\  2  =/=  3 )  ->  ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 )  =  Z )
407, 10, 39mp2an 676 . . . . . . . . . 10  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 )  =  Z
4140fveq2i 5885 . . . . . . . . 9  |-  ( b `
 ( { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } `  3 ) )  =  ( b `
 Z )
4238, 41eqtri 2451 . . . . . . . 8  |-  ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z )
4328, 35, 423pm3.2i 1183 . . . . . . 7  |-  ( ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) )
44 fveq1 5881 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  1 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
1 ) )
4544eqeq1d 2424 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  1
)  =  ( b `
 X )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X ) ) )
46 fveq1 5881 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  2 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
2 ) )
4746eqeq1d 2424 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  2
)  =  ( b `
 Y )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y ) ) )
48 fveq1 5881 . . . . . . . . 9  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
a `  3 )  =  ( ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) ` 
3 ) )
4948eqeq1d 2424 . . . . . . . 8  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  3
)  =  ( b `
 Z )  <->  ( (
b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) ) )
5045, 47, 493anbi123d 1335 . . . . . . 7  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( ( a ` 
1 )  =  ( b `  X )  /\  ( a ` 
2 )  =  ( b `  Y )  /\  ( a ` 
3 )  =  ( b `  Z ) )  <->  ( ( ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  1
)  =  ( b `
 X )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  2
)  =  ( b `
 Y )  /\  ( ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } ) `  3
)  =  ( b `
 Z ) ) ) )
5143, 50mpbiri 236 . . . . . 6  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  (
( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) ) )
52 rabren3dioph.a . . . . . 6  |-  ( ( ( a `  1
)  =  ( b `
 X )  /\  ( a `  2
)  =  ( b `
 Y )  /\  ( a `  3
)  =  ( b `
 Z ) )  ->  ( ph  <->  ps )
)
5351, 52syl 17 . . . . 5  |-  ( a  =  ( b  o. 
{ <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  ->  ( ph 
<->  ps ) )
543, 53sbcie 3334 . . . 4  |-  ( [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph  <->  ps )
5554a1i 11 . . 3  |-  ( b  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph  <->  ps ) )
5655rabbiia 3068 . 2  |-  { b  e.  ( NN0  ^m  ( 1 ... N
) )  |  [. ( b  o.  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } )  /  a ]. ph }  =  {
b  e.  ( NN0 
^m  ( 1 ... N ) )  |  ps }
5711, 12, 13, 15, 17, 19, 4, 7, 10ftp 6091 . . . . 5  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : { 1 ,  2 ,  3 } --> { X ,  Y ,  Z }
58 1z 10975 . . . . . . . 8  |-  1  e.  ZZ
59 fztp 11860 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
6058, 59ax-mp 5 . . . . . . 7  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
61 1p2e3 10742 . . . . . . . 8  |-  ( 1  +  2 )  =  3
6261oveq2i 6317 . . . . . . 7  |-  ( 1 ... ( 1  +  2 ) )  =  ( 1 ... 3
)
63 eqidd 2423 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  =  1 )
64 1p1e2 10731 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
6564a1i 11 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  =  2 )
6661a1i 11 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1  +  2 )  =  3 )
6763, 65, 66tpeq123d 4094 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 } )
6858, 67ax-mp 5 . . . . . . 7  |-  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }  =  { 1 ,  2 ,  3 }
6960, 62, 683eqtr3i 2459 . . . . . 6  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
7069feq2i 5739 . . . . 5  |-  ( {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }  <->  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : { 1 ,  2 ,  3 } --> { X ,  Y ,  Z }
)
7157, 70mpbir 212 . . . 4  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }
7214, 16, 183pm3.2i 1183 . . . . 5  |-  ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N
)  /\  Z  e.  ( 1 ... N
) )
7315, 17, 19tpss 4165 . . . . 5  |-  ( ( X  e.  ( 1 ... N )  /\  Y  e.  ( 1 ... N )  /\  Z  e.  ( 1 ... N ) )  <->  { X ,  Y ,  Z }  C_  ( 1 ... N ) )
7472, 73mpbi 211 . . . 4  |-  { X ,  Y ,  Z }  C_  ( 1 ... N
)
75 fss 5754 . . . 4  |-  ( ( { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> { X ,  Y ,  Z }  /\  { X ,  Y ,  Z }  C_  ( 1 ... N
) )  ->  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N ) )
7671, 74, 75mp2an 676 . . 3  |-  { <. 1 ,  X >. , 
<. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N )
77 rabrenfdioph 35627 . . 3  |-  ( ( N  e.  NN0  /\  {
<. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } : ( 1 ... 3 ) --> ( 1 ... N )  /\  { a  e.  ( NN0  ^m  (
1 ... 3 ) )  |  ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  [. ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  / 
a ]. ph }  e.  (Dioph `  N ) )
7876, 77mp3an2 1348 . 2  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  [. ( b  o.  { <. 1 ,  X >. ,  <. 2 ,  Y >. ,  <. 3 ,  Z >. } )  / 
a ]. ph }  e.  (Dioph `  N ) )
7956, 78syl5eqelr 2512 1  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... 3 ) )  | 
ph }  e.  (Dioph `  3 ) )  ->  { b  e.  ( NN0  ^m  (
1 ... N ) )  |  ps }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   {crab 2775   [.wsbc 3299    C_ wss 3436   {ctp 4002   <.cop 4004    o. ccom 4857    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6306    ^m cmap 7484   1c1 9548    + caddc 9550   2c2 10667   3c3 10668   NN0cn0 10877   ZZcz 10945   ...cfz 11792  Diophcdioph 35567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598  ax-inf2 8156  ax-cnex 9603  ax-resscn 9604  ax-1cn 9605  ax-icn 9606  ax-addcl 9607  ax-addrcl 9608  ax-mulcl 9609  ax-mulrcl 9610  ax-mulcom 9611  ax-addass 9612  ax-mulass 9613  ax-distr 9614  ax-i2m1 9615  ax-1ne0 9616  ax-1rid 9617  ax-rnegex 9618  ax-rrecex 9619  ax-cnre 9620  ax-pre-lttri 9621  ax-pre-lttrn 9622  ax-pre-ltadd 9623  ax-pre-mulgt0 9624
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6268  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-of 6546  df-om 6708  df-1st 6808  df-2nd 6809  df-wrecs 7040  df-recs 7102  df-rdg 7140  df-1o 7194  df-oadd 7198  df-er 7375  df-map 7486  df-en 7582  df-dom 7583  df-sdom 7584  df-fin 7585  df-card 8382  df-cda 8606  df-pnf 9685  df-mnf 9686  df-xr 9687  df-ltxr 9688  df-le 9689  df-sub 9870  df-neg 9871  df-nn 10618  df-2 10676  df-3 10677  df-n0 10878  df-z 10946  df-uz 11168  df-fz 11793  df-hash 12523  df-mzpcl 35535  df-mzp 35536  df-dioph 35568
This theorem is referenced by:  rmxdioph  35842  expdiophlem2  35848
  Copyright terms: Public domain W3C validator