Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgf Structured version   Unicode version

Theorem rabexgf 31560
 Description: A version of rabexg 4606 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rabexgf.1
Assertion
Ref Expression
rabexgf

Proof of Theorem rabexgf
StepHypRef Expression
1 df-rab 2816 . . 3
2 simpl 457 . . . . 5
32ss2abi 3568 . . . 4
4 rabexgf.1 . . . . 5
54abid2f 2648 . . . 4
63, 5sseqtri 3531 . . 3
71, 6eqsstri 3529 . 2
8 ssexg 4602 . 2
97, 8mpan 670 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wcel 1819  cab 2442  wnfc 2605  crab 2811  cvv 3109   wss 3471 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-in 3478  df-ss 3485 This theorem is referenced by:  stoweidlem27  31970  stoweidlem35  31978
 Copyright terms: Public domain W3C validator