Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabexd Structured version   Unicode version

Theorem rabexd 4608
 Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4609. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1
rabexd.2
Assertion
Ref Expression
rabexd
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2
2 rabexd.2 . . 3
3 rabexg 4606 . . 3
42, 3syl 16 . 2
51, 4syl5eqel 2549 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1395   wcel 1819  crab 2811  cvv 3109 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-in 3478  df-ss 3485 This theorem is referenced by:  rabex2  4609  zorn2lem1  8893  sylow2a  16765  evlslem6  18307  mretopd  19719  cusgraexilem1  24592  stoweidlem35  31978  stoweidlem50  31993  stoweidlem57  32000  stoweidlem59  32002
 Copyright terms: Public domain W3C validator