MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqf Structured version   Unicode version

Theorem rabeqf 3106
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1  |-  F/_ x A
rabeqf.2  |-  F/_ x B
Assertion
Ref Expression
rabeqf  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4  |-  F/_ x A
2 rabeqf.2 . . . 4  |-  F/_ x B
31, 2nfeq 2640 . . 3  |-  F/ x  A  =  B
4 eleq2 2540 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
54anbi1d 704 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ph )
) )
63, 5abbid 2602 . 2  |-  ( A  =  B  ->  { x  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  B  /\  ph ) } )
7 df-rab 2823 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
8 df-rab 2823 . 2  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
96, 7, 83eqtr4g 2533 1  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   F/_wnfc 2615   {crab 2818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rab 2823
This theorem is referenced by:  rabeq  3107  fpwrelmapffs  27257  rabeq12f  30197
  Copyright terms: Public domain W3C validator