MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqf Structured version   Unicode version

Theorem rabeqf 2965
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1  |-  F/_ x A
rabeqf.2  |-  F/_ x B
Assertion
Ref Expression
rabeqf  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4  |-  F/_ x A
2 rabeqf.2 . . . 4  |-  F/_ x B
31, 2nfeq 2586 . . 3  |-  F/ x  A  =  B
4 eleq2 2504 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
54anbi1d 704 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ph )
) )
63, 5abbid 2556 . 2  |-  ( A  =  B  ->  { x  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  B  /\  ph ) } )
7 df-rab 2724 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
8 df-rab 2724 . 2  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
96, 7, 83eqtr4g 2500 1  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   F/_wnfc 2566   {crab 2719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-rab 2724
This theorem is referenced by:  rabeq  2966  fpwrelmapffs  26034  rabeq12f  28969
  Copyright terms: Public domain W3C validator