Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbidva Structured version   Unicode version

Theorem rabeqbidva 3104
 Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1
rabeqbidva.2
Assertion
Ref Expression
rabeqbidva
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3
21rabbidva 3099 . 2
3 rabeqbidva.1 . . 3
4 rabeq 3102 . . 3
53, 4syl 16 . 2
62, 5eqtrd 2503 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1374   wcel 1762  crab 2813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rab 2818 This theorem is referenced by:  natpropd  15194  gsumpropd2lem  15813  eengv  23953  elntg  23958  fourierdlem79  31443  fourierdlem110  31474  domnmsuppn0  31912
 Copyright terms: Public domain W3C validator