Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdiophlem2 Structured version   Unicode version

Theorem rabdiophlem2 30654
Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypothesis
Ref Expression
rabdiophlem2.1  |-  M  =  ( N  +  1 )
Assertion
Ref Expression
rabdiophlem2  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... M ) ) 
|->  [_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )  e.  (mzPoly `  ( 1 ... M
) ) )
Distinct variable groups:    u, N, t    u, M, t    t, A
Allowed substitution hint:    A( u)

Proof of Theorem rabdiophlem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 nfcv 2629 . . . . . 6  |-  F/_ a A
2 nfcsb1v 3456 . . . . . 6  |-  F/_ u [_ a  /  u ]_ A
3 csbeq1a 3449 . . . . . 6  |-  ( u  =  a  ->  A  =  [_ a  /  u ]_ A )
41, 2, 3cbvmpt 4543 . . . . 5  |-  ( u  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A )  =  ( a  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  [_ a  /  u ]_ A )
54fveq1i 5873 . . . 4  |-  ( ( u  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) `  ( t  |`  ( 1 ... N
) ) )  =  ( ( a  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  [_ a  /  u ]_ A ) `  (
t  |`  ( 1 ... N ) ) )
6 rabdiophlem2.1 . . . . . . 7  |-  M  =  ( N  +  1 )
76mapfzcons1cl 30569 . . . . . 6  |-  ( t  e.  ( ZZ  ^m  ( 1 ... M
) )  ->  (
t  |`  ( 1 ... N ) )  e.  ( ZZ  ^m  (
1 ... N ) ) )
87adantl 466 . . . . 5  |-  ( ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( ZZ  ^m  ( 1 ... M
) ) )  -> 
( t  |`  (
1 ... N ) )  e.  ( ZZ  ^m  ( 1 ... N
) ) )
9 mzpf 30587 . . . . . . . 8  |-  ( ( u  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  (
u  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A ) : ( ZZ 
^m  ( 1 ... N ) ) --> ZZ )
10 eqid 2467 . . . . . . . . 9  |-  ( u  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A )  =  ( u  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A )
1110fmpt 6053 . . . . . . . 8  |-  ( A. u  e.  ( ZZ  ^m  ( 1 ... N
) ) A  e.  ZZ  <->  ( u  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) : ( ZZ  ^m  ( 1 ... N ) ) --> ZZ )
129, 11sylibr 212 . . . . . . 7  |-  ( ( u  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. u  e.  ( ZZ  ^m  (
1 ... N ) ) A  e.  ZZ )
1312ad2antlr 726 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( ZZ  ^m  ( 1 ... M
) ) )  ->  A. u  e.  ( ZZ  ^m  ( 1 ... N ) ) A  e.  ZZ )
14 nfcsb1v 3456 . . . . . . . 8  |-  F/_ u [_ ( t  |`  (
1 ... N ) )  /  u ]_ A
1514nfel1 2645 . . . . . . 7  |-  F/ u [_ ( t  |`  (
1 ... N ) )  /  u ]_ A  e.  ZZ
16 csbeq1a 3449 . . . . . . . 8  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  A  =  [_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )
1716eleq1d 2536 . . . . . . 7  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( A  e.  ZZ  <->  [_ ( t  |`  ( 1 ... N
) )  /  u ]_ A  e.  ZZ ) )
1815, 17rspc 3213 . . . . . 6  |-  ( ( t  |`  ( 1 ... N ) )  e.  ( ZZ  ^m  ( 1 ... N
) )  ->  ( A. u  e.  ( ZZ  ^m  ( 1 ... N ) ) A  e.  ZZ  ->  [_ (
t  |`  ( 1 ... N ) )  /  u ]_ A  e.  ZZ ) )
198, 13, 18sylc 60 . . . . 5  |-  ( ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( ZZ  ^m  ( 1 ... M
) ) )  ->  [_ ( t  |`  (
1 ... N ) )  /  u ]_ A  e.  ZZ )
20 csbeq1 3443 . . . . . 6  |-  ( a  =  ( t  |`  ( 1 ... N
) )  ->  [_ a  /  u ]_ A  = 
[_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )
21 eqid 2467 . . . . . 6  |-  ( a  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  [_ a  /  u ]_ A )  =  ( a  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  [_ a  /  u ]_ A )
2220, 21fvmptg 5955 . . . . 5  |-  ( ( ( t  |`  (
1 ... N ) )  e.  ( ZZ  ^m  ( 1 ... N
) )  /\  [_ (
t  |`  ( 1 ... N ) )  /  u ]_ A  e.  ZZ )  ->  ( ( a  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  [_ a  /  u ]_ A ) `
 ( t  |`  ( 1 ... N
) ) )  = 
[_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )
238, 19, 22syl2anc 661 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( ZZ  ^m  ( 1 ... M
) ) )  -> 
( ( a  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  [_ a  /  u ]_ A ) `  (
t  |`  ( 1 ... N ) ) )  =  [_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )
245, 23syl5req 2521 . . 3  |-  ( ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  /\  t  e.  ( ZZ  ^m  ( 1 ... M
) ) )  ->  [_ ( t  |`  (
1 ... N ) )  /  u ]_ A  =  ( ( u  e.  ( ZZ  ^m  ( 1 ... N
) )  |->  A ) `
 ( t  |`  ( 1 ... N
) ) ) )
2524mpteq2dva 4539 . 2  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... M ) ) 
|->  [_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )  =  ( t  e.  ( ZZ 
^m  ( 1 ... M ) )  |->  ( ( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A ) `  (
t  |`  ( 1 ... N ) ) ) ) )
26 ovex 6320 . . . 4  |-  ( 1 ... M )  e. 
_V
2726a1i 11 . . 3  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( 1 ... M
)  e.  _V )
28 fzssp1 11738 . . . . 5  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
296oveq2i 6306 . . . . 5  |-  ( 1 ... M )  =  ( 1 ... ( N  +  1 ) )
3028, 29sseqtr4i 3542 . . . 4  |-  ( 1 ... N )  C_  ( 1 ... M
)
3130a1i 11 . . 3  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( 1 ... N
)  C_  ( 1 ... M ) )
32 simpr 461 . . 3  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( u  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )
33 mzpresrename 30602 . . 3  |-  ( ( ( 1 ... M
)  e.  _V  /\  ( 1 ... N
)  C_  ( 1 ... M )  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... M ) ) 
|->  ( ( u  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  (
t  |`  ( 1 ... N ) ) ) )  e.  (mzPoly `  ( 1 ... M
) ) )
3427, 31, 32, 33syl3anc 1228 . 2  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... M ) ) 
|->  ( ( u  e.  ( ZZ  ^m  (
1 ... N ) ) 
|->  A ) `  (
t  |`  ( 1 ... N ) ) ) )  e.  (mzPoly `  ( 1 ... M
) ) )
3525, 34eqeltrd 2555 1  |-  ( ( N  e.  NN0  /\  ( u  e.  ( ZZ  ^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... M ) ) 
|->  [_ ( t  |`  ( 1 ... N
) )  /  u ]_ A )  e.  (mzPoly `  ( 1 ... M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118   [_csb 3440    C_ wss 3481    |-> cmpt 4511    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^m cmap 7432   1c1 9505    + caddc 9507   NN0cn0 10807   ZZcz 10876   ...cfz 11684  mzPolycmzp 30573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-mzpcl 30574  df-mzp 30575
This theorem is referenced by:  elnn0rabdioph  30655  dvdsrabdioph  30662
  Copyright terms: Public domain W3C validator