MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbidva2 Structured version   Unicode version

Theorem rabbidva2 3096
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypothesis
Ref Expression
rabbidva2.1  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
Assertion
Ref Expression
rabbidva2  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem rabbidva2
StepHypRef Expression
1 rabbidva2.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
21abbidv 2596 . 2  |-  ( ph  ->  { x  |  ( x  e.  A  /\  ps ) }  =  {
x  |  ( x  e.  B  /\  ch ) } )
3 df-rab 2816 . 2  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
4 df-rab 2816 . 2  |-  { x  e.  B  |  ch }  =  { x  |  ( x  e.  B  /\  ch ) }
52, 3, 43eqtr4g 2526 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   {cab 2445   {crab 2811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-rab 2816
This theorem is referenced by:  wwlkn0s  24367  orvcgteel  27896  orvclteel  27901
  Copyright terms: Public domain W3C validator