MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabasiun Structured version   Unicode version

Theorem rabasiun 4324
Description: A class abstraction with a restricted existential quantification expressed as indexed union. (Contributed by Alexander van der Vekens, 29-Jul-2018.)
Assertion
Ref Expression
rabasiun  |-  { x  e.  X  |  E. y  e.  Y  ph }  =  U_ y  e.  Y  { x  e.  X  |  ph }
Distinct variable groups:    x, X, y    x, Y, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem rabasiun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2624 . . . . . 6  |-  F/_ z X
21nfcri 2617 . . . . 5  |-  F/ z  x  e.  X
3 nfv 1678 . . . . 5  |-  F/ z E. y  e.  Y  ph
42, 3nfan 1870 . . . 4  |-  F/ z ( x  e.  X  /\  E. y  e.  Y  ph )
5 nfcv 2624 . . . . . 6  |-  F/_ x X
65nfcri 2617 . . . . 5  |-  F/ x  z  e.  X
7 nfcv 2624 . . . . . 6  |-  F/_ x Y
8 nfs1v 2159 . . . . . 6  |-  F/ x [ z  /  x ] ph
97, 8nfrex 2922 . . . . 5  |-  F/ x E. y  e.  Y  [ z  /  x ] ph
106, 9nfan 1870 . . . 4  |-  F/ x
( z  e.  X  /\  E. y  e.  Y  [ z  /  x ] ph )
11 eleq1 2534 . . . . 5  |-  ( x  =  z  ->  (
x  e.  X  <->  z  e.  X ) )
12 sbequ12 1956 . . . . . 6  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
1312rexbidv 2968 . . . . 5  |-  ( x  =  z  ->  ( E. y  e.  Y  ph  <->  E. y  e.  Y  [
z  /  x ] ph ) )
1411, 13anbi12d 710 . . . 4  |-  ( x  =  z  ->  (
( x  e.  X  /\  E. y  e.  Y  ph )  <->  ( z  e.  X  /\  E. y  e.  Y  [ z  /  x ] ph )
) )
154, 10, 14cbvab 2603 . . 3  |-  { x  |  ( x  e.  X  /\  E. y  e.  Y  ph ) }  =  { z  |  ( z  e.  X  /\  E. y  e.  Y  [ z  /  x ] ph ) }
16 r19.42v 3011 . . . . 5  |-  ( E. y  e.  Y  ( z  e.  X  /\  [ z  /  x ] ph )  <->  ( z  e.  X  /\  E. y  e.  Y  [ z  /  x ] ph )
)
17 nfcv 2624 . . . . . . . 8  |-  F/_ x
z
1817, 5, 8, 12elrabf 3254 . . . . . . 7  |-  ( z  e.  { x  e.  X  |  ph }  <->  ( z  e.  X  /\  [ z  /  x ] ph ) )
1918bicomi 202 . . . . . 6  |-  ( ( z  e.  X  /\  [ z  /  x ] ph )  <->  z  e.  {
x  e.  X  |  ph } )
2019rexbii 2960 . . . . 5  |-  ( E. y  e.  Y  ( z  e.  X  /\  [ z  /  x ] ph )  <->  E. y  e.  Y  z  e.  { x  e.  X  |  ph }
)
2116, 20bitr3i 251 . . . 4  |-  ( ( z  e.  X  /\  E. y  e.  Y  [
z  /  x ] ph )  <->  E. y  e.  Y  z  e.  { x  e.  X  |  ph }
)
2221abbii 2596 . . 3  |-  { z  |  ( z  e.  X  /\  E. y  e.  Y  [ z  /  x ] ph ) }  =  { z  |  E. y  e.  Y  z  e.  { x  e.  X  |  ph } }
2315, 22eqtri 2491 . 2  |-  { x  |  ( x  e.  X  /\  E. y  e.  Y  ph ) }  =  { z  |  E. y  e.  Y  z  e.  { x  e.  X  |  ph } }
24 df-rab 2818 . 2  |-  { x  e.  X  |  E. y  e.  Y  ph }  =  { x  |  ( x  e.  X  /\  E. y  e.  Y  ph ) }
25 df-iun 4322 . 2  |-  U_ y  e.  Y  { x  e.  X  |  ph }  =  { z  |  E. y  e.  Y  z  e.  { x  e.  X  |  ph } }
2623, 24, 253eqtr4i 2501 1  |-  { x  e.  X  |  E. y  e.  Y  ph }  =  U_ y  e.  Y  { x  e.  X  |  ph }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1374   [wsb 1706    e. wcel 1762   {cab 2447   E.wrex 2810   {crab 2813   U_ciun 4320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-iun 4322
This theorem is referenced by:  hashrabrex  13588
  Copyright terms: Public domain W3C validator