Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaanv Structured version   Unicode version

Theorem raaanv 3881
 Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
Assertion
Ref Expression
raaanv
Distinct variable groups:   ,   ,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem raaanv
StepHypRef Expression
1 rzal 3874 . . 3
2 rzal 3874 . . 3
3 rzal 3874 . . 3
4 pm5.1 858 . . 3
51, 2, 3, 4syl12anc 1228 . 2
6 r19.28zv 3867 . . . 4
76ralbidv 2842 . . 3
8 r19.27zv 3872 . . 3
97, 8bitrd 253 . 2
105, 9pm2.61ine 2716 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 367   wceq 1405   wne 2598  wral 2753  c0 3737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-v 3060  df-dif 3416  df-nul 3738 This theorem is referenced by:  reusv3i  4600  f1mpt  6149  isclo2  19880
 Copyright terms: Public domain W3C validator