MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaan Structured version   Unicode version

Theorem raaan 3935
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
Hypotheses
Ref Expression
raaan.1  |-  F/ y
ph
raaan.2  |-  F/ x ps
Assertion
Ref Expression
raaan  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem raaan
StepHypRef Expression
1 rzal 3929 . . 3  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  A  ( ph  /\ 
ps ) )
2 rzal 3929 . . 3  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
3 rzal 3929 . . 3  |-  ( A  =  (/)  ->  A. y  e.  A  ps )
4 pm5.1 855 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  /\  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph 
/\  A. y  e.  A  ps ) ) )
51, 2, 3, 4syl12anc 1226 . 2  |-  ( A  =  (/)  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
6 raaan.1 . . . . 5  |-  F/ y
ph
76r19.28z 3920 . . . 4  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. y  e.  A  ps ) ) )
87ralbidv 2903 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  A  ps ) ) )
9 nfcv 2629 . . . . 5  |-  F/_ x A
10 raaan.2 . . . . 5  |-  F/ x ps
119, 10nfral 2850 . . . 4  |-  F/ x A. y  e.  A  ps
1211r19.27z 3926 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  A. y  e.  A  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
138, 12bitrd 253 . 2  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
145, 13pm2.61ine 2780 1  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379   F/wnf 1599    =/= wne 2662   A.wral 2814   (/)c0 3785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-v 3115  df-dif 3479  df-nul 3786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator