MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaan Structured version   Unicode version

Theorem raaan 3925
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
Hypotheses
Ref Expression
raaan.1  |-  F/ y
ph
raaan.2  |-  F/ x ps
Assertion
Ref Expression
raaan  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem raaan
StepHypRef Expression
1 rzal 3919 . . 3  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  A  ( ph  /\ 
ps ) )
2 rzal 3919 . . 3  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
3 rzal 3919 . . 3  |-  ( A  =  (/)  ->  A. y  e.  A  ps )
4 pm5.1 855 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  /\  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph 
/\  A. y  e.  A  ps ) ) )
51, 2, 3, 4syl12anc 1224 . 2  |-  ( A  =  (/)  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
6 raaan.1 . . . . 5  |-  F/ y
ph
76r19.28z 3909 . . . 4  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. y  e.  A  ps ) ) )
87ralbidv 2893 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  A  ps ) ) )
9 nfcv 2616 . . . . 5  |-  F/_ x A
10 raaan.2 . . . . 5  |-  F/ x ps
119, 10nfral 2840 . . . 4  |-  F/ x A. y  e.  A  ps
1211r19.27z 3916 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  A. y  e.  A  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
138, 12bitrd 253 . 2  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
145, 13pm2.61ine 2767 1  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398   F/wnf 1621    =/= wne 2649   A.wral 2804   (/)c0 3783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-v 3108  df-dif 3464  df-nul 3784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator