Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2exf Structured version   Unicode version

Theorem r2exf 2927
 Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 2926. (Revised by Wolf Lammen, 10-Jan-2020.)
Hypothesis
Ref Expression
r2exf.1
Assertion
Ref Expression
r2exf
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem r2exf
StepHypRef Expression
1 r2exf.1 . . 3
21r2alf 2779 . 2
32r2exlem 2926 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 184   wa 367  wex 1633   wcel 1842  wnfc 2550  wrex 2754 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-ex 1634  df-nf 1638  df-sb 1764  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2758  df-rex 2759 This theorem is referenced by:  r2exOLD  2930  rexcomf  2966
 Copyright terms: Public domain W3C validator