Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2exf Structured version   Unicode version

Theorem r2exf 2876
 Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1
Assertion
Ref Expression
r2exf
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem r2exf
StepHypRef Expression
1 df-rex 2805 . 2
2 r2alf.1 . . . . . 6
32nfcri 2609 . . . . 5
4319.42 1912 . . . 4
5 anass 649 . . . . 5
65exbii 1635 . . . 4
7 df-rex 2805 . . . . 5
87anbi2i 694 . . . 4
94, 6, 83bitr4i 277 . . 3
109exbii 1635 . 2
111, 10bitr4i 252 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369  wex 1587   wcel 1758  wnfc 2602  wrex 2800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703  df-cleq 2446  df-clel 2449  df-nfc 2604  df-rex 2805 This theorem is referenced by:  r2ex  2878  rexcomf  2986
 Copyright terms: Public domain W3C validator