MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2alf Structured version   Unicode version

Theorem r2alf 2875
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1  |-  F/_ y A
Assertion
Ref Expression
r2alf  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem r2alf
StepHypRef Expression
1 df-ral 2804 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x
( x  e.  A  ->  A. y  e.  B  ph ) )
2 r2alf.1 . . . . . 6  |-  F/_ y A
32nfcri 2609 . . . . 5  |-  F/ y  x  e.  A
4319.21 1844 . . . 4  |-  ( A. y ( x  e.  A  ->  ( y  e.  B  ->  ph )
)  <->  ( x  e.  A  ->  A. y
( y  e.  B  ->  ph ) ) )
5 impexp 446 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ph )  <->  ( x  e.  A  ->  ( y  e.  B  ->  ph )
) )
65albii 1611 . . . 4  |-  ( A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. y ( x  e.  A  ->  ( y  e.  B  ->  ph )
) )
7 df-ral 2804 . . . . 5  |-  ( A. y  e.  B  ph  <->  A. y
( y  e.  B  ->  ph ) )
87imbi2i 312 . . . 4  |-  ( ( x  e.  A  ->  A. y  e.  B  ph )  <->  ( x  e.  A  ->  A. y
( y  e.  B  ->  ph ) ) )
94, 6, 83bitr4i 277 . . 3  |-  ( A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  ( x  e.  A  ->  A. y  e.  B  ph ) )
109albii 1611 . 2  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. x
( x  e.  A  ->  A. y  e.  B  ph ) )
111, 10bitr4i 252 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    e. wcel 1758   F/_wnfc 2602   A.wral 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2804
This theorem is referenced by:  r2al  2877  ralcomf  2985
  Copyright terms: Public domain W3C validator