MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Unicode version

Theorem r1val1 8195
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1  |-  ( A  e.  dom  R1  ->  ( R1 `  A )  =  U_ x  e.  A  ~P ( R1
`  x ) )
Distinct variable group:    x, A

Proof of Theorem r1val1
StepHypRef Expression
1 r1funlim 8175 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 462 . . . . . . 7  |-  Lim  dom  R1
3 limord 4932 . . . . . . 7  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . . . . 6  |-  Ord  dom  R1
5 ordsson 6598 . . . . . 6  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 5 . . . . 5  |-  dom  R1  C_  On
76sseli 3495 . . . 4  |-  ( A  e.  dom  R1  ->  A  e.  On )
8 onzsl 6654 . . . 4  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
97, 8sylib 196 . . 3  |-  ( A  e.  dom  R1  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
10 simpr 461 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  ->  A  =  (/) )
1110fveq2d 5863 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  =  ( R1
`  (/) ) )
12 r10 8177 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
1311, 12syl6eq 2519 . . . . 5  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  =  (/) )
14 0ss 3809 . . . . . 6  |-  (/)  C_  U_ x  e.  A  ~P ( R1 `  x )
1514a1i 11 . . . . 5  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  ->  (/)  C_  U_ x  e.  A  ~P ( R1 `  x
) )
1613, 15eqsstrd 3533 . . . 4  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) )
17 nfv 1678 . . . . . 6  |-  F/ x  A  e.  dom  R1
18 nfcv 2624 . . . . . . 7  |-  F/_ x
( R1 `  A
)
19 nfiu1 4350 . . . . . . 7  |-  F/_ x U_ x  e.  A  ~P ( R1 `  x
)
2018, 19nfss 3492 . . . . . 6  |-  F/ x
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x )
21 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  A  =  suc  x )
2221fveq2d 5863 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  =  ( R1 `  suc  x
) )
23 eleq1 2534 . . . . . . . . . . . . 13  |-  ( A  =  suc  x  -> 
( A  e.  dom  R1  <->  suc  x  e.  dom  R1 ) )
2423biimpac 486 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  suc  x  e. 
dom  R1 )
25 limsuc 6657 . . . . . . . . . . . . 13  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
262, 25ax-mp 5 . . . . . . . . . . . 12  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2724, 26sylibr 212 . . . . . . . . . . 11  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  x  e.  dom  R1 )
28 r1sucg 8178 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2927, 28syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
3022, 29eqtrd 2503 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  =  ~P ( R1 `  x ) )
31 vex 3111 . . . . . . . . . . . 12  |-  x  e. 
_V
3231sucid 4952 . . . . . . . . . . 11  |-  x  e. 
suc  x
3332, 21syl5eleqr 2557 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  x  e.  A )
34 ssiun2 4363 . . . . . . . . . 10  |-  ( x  e.  A  ->  ~P ( R1 `  x ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
3533, 34syl 16 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ~P ( R1 `  x )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
3630, 35eqsstrd 3533 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
3736ex 434 . . . . . . 7  |-  ( A  e.  dom  R1  ->  ( A  =  suc  x  ->  ( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) )
3837a1d 25 . . . . . 6  |-  ( A  e.  dom  R1  ->  ( x  e.  On  ->  ( A  =  suc  x  ->  ( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) ) )
3917, 20, 38rexlimd 2942 . . . . 5  |-  ( A  e.  dom  R1  ->  ( E. x  e.  On  A  =  suc  x  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) )
4039imp 429 . . . 4  |-  ( ( A  e.  dom  R1  /\ 
E. x  e.  On  A  =  suc  x )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
41 r1limg 8180 . . . . . 6  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
42 r1tr 8185 . . . . . . . . . 10  |-  Tr  ( R1 `  x )
43 dftr4 4540 . . . . . . . . . 10  |-  ( Tr  ( R1 `  x
)  <->  ( R1 `  x )  C_  ~P ( R1 `  x ) )
4442, 43mpbi 208 . . . . . . . . 9  |-  ( R1
`  x )  C_  ~P ( R1 `  x
)
4544a1i 11 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  x
)  C_  ~P ( R1 `  x ) )
4645ralrimivw 2874 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  ->  A. x  e.  A  ( R1 `  x ) 
C_  ~P ( R1 `  x ) )
47 ss2iun 4336 . . . . . . 7  |-  ( A. x  e.  A  ( R1 `  x )  C_  ~P ( R1 `  x
)  ->  U_ x  e.  A  ( R1 `  x )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
4846, 47syl 16 . . . . . 6  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  ->  U_ x  e.  A  ( R1 `  x ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
4941, 48eqsstrd 3533 . . . . 5  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) )
5049adantrl 715 . . . 4  |-  ( ( A  e.  dom  R1  /\  ( A  e.  _V  /\ 
Lim  A ) )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
5116, 40, 503jaodan 1289 . . 3  |-  ( ( A  e.  dom  R1  /\  ( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
529, 51mpdan 668 . 2  |-  ( A  e.  dom  R1  ->  ( R1 `  A ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
53 ordtr1 4916 . . . . . . . 8  |-  ( Ord 
dom  R1  ->  ( ( x  e.  A  /\  A  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
544, 53ax-mp 5 . . . . . . 7  |-  ( ( x  e.  A  /\  A  e.  dom  R1 )  ->  x  e.  dom  R1 )
5554ancoms 453 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  x  e.  dom  R1 )
5655, 28syl 16 . . . . 5  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
57 simpr 461 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  x  e.  A
)
58 ordelord 4895 . . . . . . . . . 10  |-  ( ( Ord  dom  R1  /\  A  e.  dom  R1 )  ->  Ord  A )
594, 58mpan 670 . . . . . . . . 9  |-  ( A  e.  dom  R1  ->  Ord 
A )
6059adantr 465 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  Ord  A )
61 ordelsuc 6628 . . . . . . . 8  |-  ( ( x  e.  A  /\  Ord  A )  ->  (
x  e.  A  <->  suc  x  C_  A ) )
6257, 60, 61syl2anc 661 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( x  e.  A  <->  suc  x  C_  A
) )
6357, 62mpbid 210 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  suc  x  C_  A
)
6455, 26sylib 196 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  suc  x  e.  dom  R1 )
65 simpl 457 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  A  e.  dom  R1 )
66 r1ord3g 8188 . . . . . . 7  |-  ( ( suc  x  e.  dom  R1 
/\  A  e.  dom  R1 )  ->  ( suc  x  C_  A  ->  ( R1 `  suc  x ) 
C_  ( R1 `  A ) ) )
6764, 65, 66syl2anc 661 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( suc  x  C_  A  ->  ( R1 ` 
suc  x )  C_  ( R1 `  A ) ) )
6863, 67mpd 15 . . . . 5  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( R1 `  suc  x )  C_  ( R1 `  A ) )
6956, 68eqsstr3d 3534 . . . 4  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ~P ( R1
`  x )  C_  ( R1 `  A ) )
7069ralrimiva 2873 . . 3  |-  ( A  e.  dom  R1  ->  A. x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A ) )
71 iunss 4361 . . 3  |-  ( U_ x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A )  <->  A. x  e.  A  ~P ( R1 `  x )  C_  ( R1 `  A ) )
7270, 71sylibr 212 . 2  |-  ( A  e.  dom  R1  ->  U_ x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A ) )
7352, 72eqssd 3516 1  |-  ( A  e.  dom  R1  ->  ( R1 `  A )  =  U_ x  e.  A  ~P ( R1
`  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 967    = wceq 1374    e. wcel 1762   A.wral 2809   E.wrex 2810   _Vcvv 3108    C_ wss 3471   (/)c0 3780   ~Pcpw 4005   U_ciun 4320   Tr wtr 4535   Ord word 4872   Oncon0 4873   Lim wlim 4874   suc csuc 4875   dom cdm 4994   Fun wfun 5575   ` cfv 5581   R1cr1 8171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6674  df-recs 7034  df-rdg 7068  df-r1 8173
This theorem is referenced by:  rankr1ai  8207  r1val3  8247
  Copyright terms: Public domain W3C validator