MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Structured version   Unicode version

Theorem r1tskina 9071
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina  |-  ( A  e.  On  ->  (
( R1 `  A
)  e.  Tarski  <->  ( A  =  (/)  \/  A  e. 
Inacc ) ) )

Proof of Theorem r1tskina
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ne 2579 . . . . 5  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
2 simplr 753 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( R1 `  A )  e. 
Tarski )
3 simpll 751 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  A  e.  On )
4 onwf 8161 . . . . . . . . . . . . . . . 16  |-  On  C_  U. ( R1 " On )
54sseli 3413 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  A  e.  U. ( R1 " On ) )
6 eqid 2382 . . . . . . . . . . . . . . . 16  |-  ( rank `  A )  =  (
rank `  A )
7 rankr1c 8152 . . . . . . . . . . . . . . . 16  |-  ( A  e.  U. ( R1
" On )  -> 
( ( rank `  A
)  =  ( rank `  A )  <->  ( -.  A  e.  ( R1 `  ( rank `  A
) )  /\  A  e.  ( R1 `  suc  ( rank `  A )
) ) ) )
86, 7mpbii 211 . . . . . . . . . . . . . . 15  |-  ( A  e.  U. ( R1
" On )  -> 
( -.  A  e.  ( R1 `  ( rank `  A ) )  /\  A  e.  ( R1 `  suc  ( rank `  A ) ) ) )
95, 8syl 16 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  ( -.  A  e.  ( R1 `  ( rank `  A
) )  /\  A  e.  ( R1 `  suc  ( rank `  A )
) ) )
109simpld 457 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
11 r1fnon 8098 . . . . . . . . . . . . . . . . 17  |-  R1  Fn  On
12 fndm 5588 . . . . . . . . . . . . . . . . 17  |-  ( R1  Fn  On  ->  dom  R1  =  On )
1311, 12ax-mp 5 . . . . . . . . . . . . . . . 16  |-  dom  R1  =  On
1413eleq2i 2460 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom  R1  <->  A  e.  On )
15 rankonid 8160 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom  R1  <->  ( rank `  A )  =  A )
1614, 15bitr3i 251 . . . . . . . . . . . . . 14  |-  ( A  e.  On  <->  ( rank `  A )  =  A )
17 fveq2 5774 . . . . . . . . . . . . . 14  |-  ( (
rank `  A )  =  A  ->  ( R1
`  ( rank `  A
) )  =  ( R1 `  A ) )
1816, 17sylbi 195 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( R1 `  ( rank `  A
) )  =  ( R1 `  A ) )
1910, 18neleqtrd 2494 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  -.  A  e.  ( R1 `  A ) )
2019adantl 464 . . . . . . . . . . 11  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  -.  A  e.  ( R1 `  A ) )
21 onssr1 8162 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  R1  ->  A 
C_  ( R1 `  A ) )
2214, 21sylbir 213 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  A  C_  ( R1 `  A
) )
23 tsken 9043 . . . . . . . . . . . . 13  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  C_  ( R1 `  A
) )  ->  ( A  ~~  ( R1 `  A )  \/  A  e.  ( R1 `  A
) ) )
2422, 23sylan2 472 . . . . . . . . . . . 12  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  ( A  ~~  ( R1 `  A )  \/  A  e.  ( R1 `  A
) ) )
2524ord 375 . . . . . . . . . . 11  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  ( -.  A  ~~  ( R1
`  A )  ->  A  e.  ( R1 `  A ) ) )
2620, 25mt3d 125 . . . . . . . . . 10  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  A  ~~  ( R1 `  A
) )
272, 3, 26syl2anc 659 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  A  ~~  ( R1 `  A
) )
28 carden2b 8261 . . . . . . . . 9  |-  ( A 
~~  ( R1 `  A )  ->  ( card `  A )  =  ( card `  ( R1 `  A ) ) )
2927, 28syl 16 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  A )  =  ( card `  ( R1 `  A ) ) )
30 simpl 455 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  A  e.  On )
31 simplr 753 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  ( R1 `  A
)  e.  Tarski )
3222adantr 463 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  A  C_  ( R1 `  A
) )
3332sselda 3417 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  x  e.  ( R1
`  A ) )
34 tsksdom 9045 . . . . . . . . . . . . 13  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  x  e.  ( R1 `  A
) )  ->  x  ~<  ( R1 `  A
) )
3531, 33, 34syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  x  ~<  ( R1 `  A ) )
36 simpll 751 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  A  e.  On )
3726ensymd 7485 . . . . . . . . . . . . 13  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  A  e.  On )  ->  ( R1 `  A )  ~~  A )
3831, 36, 37syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  ( R1 `  A
)  ~~  A )
39 sdomentr 7570 . . . . . . . . . . . 12  |-  ( ( x  ~<  ( R1 `  A )  /\  ( R1 `  A )  ~~  A )  ->  x  ~<  A )
4035, 38, 39syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  x  e.  A )  ->  x  ~<  A )
4140ralrimiva 2796 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  A. x  e.  A  x  ~<  A )
42 iscard 8269 . . . . . . . . . 10  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
4330, 41, 42sylanbrc 662 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( card `  A )  =  A )
4443adantr 463 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  A )  =  A )
4529, 44eqtr3d 2425 . . . . . . 7  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  ( R1 `  A ) )  =  A )
46 r10 8099 . . . . . . . . . . 11  |-  ( R1
`  (/) )  =  (/)
47 on0eln0 4847 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
4847biimpar 483 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
49 r1sdom 8105 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( R1 `  (/) )  ~< 
( R1 `  A
) )
5048, 49syldan 468 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  ( R1 `  (/) )  ~<  ( R1 `  A ) )
5146, 50syl5eqbrr 4401 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  ~<  ( R1 `  A ) )
52 fvex 5784 . . . . . . . . . . 11  |-  ( R1
`  A )  e. 
_V
53520sdom 7567 . . . . . . . . . 10  |-  ( (/)  ~< 
( R1 `  A
)  <->  ( R1 `  A )  =/=  (/) )
5451, 53sylib 196 . . . . . . . . 9  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  ( R1 `  A )  =/=  (/) )
5554adantlr 712 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( R1 `  A )  =/=  (/) )
56 tskcard 9070 . . . . . . . 8  |-  ( ( ( R1 `  A
)  e.  Tarski  /\  ( R1 `  A )  =/=  (/) )  ->  ( card `  ( R1 `  A
) )  e.  Inacc )
572, 55, 56syl2anc 659 . . . . . . 7  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  ( card `  ( R1 `  A ) )  e. 
Inacc )
5845, 57eqeltrrd 2471 . . . . . 6  |-  ( ( ( A  e.  On  /\  ( R1 `  A
)  e.  Tarski )  /\  A  =/=  (/) )  ->  A  e.  Inacc )
5958ex 432 . . . . 5  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( A  =/=  (/)  ->  A  e.  Inacc
) )
601, 59syl5bir 218 . . . 4  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( -.  A  =  (/)  ->  A  e.  Inacc ) )
6160orrd 376 . . 3  |-  ( ( A  e.  On  /\  ( R1 `  A )  e.  Tarski )  ->  ( A  =  (/)  \/  A  e.  Inacc ) )
6261ex 432 . 2  |-  ( A  e.  On  ->  (
( R1 `  A
)  e.  Tarski  ->  ( A  =  (/)  \/  A  e.  Inacc ) ) )
63 fveq2 5774 . . . . 5  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
6463, 46syl6eq 2439 . . . 4  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
65 0tsk 9044 . . . 4  |-  (/)  e.  Tarski
6664, 65syl6eqel 2478 . . 3  |-  ( A  =  (/)  ->  ( R1
`  A )  e. 
Tarski )
67 inatsk 9067 . . 3  |-  ( A  e.  Inacc  ->  ( R1 `  A )  e.  Tarski )
6866, 67jaoi 377 . 2  |-  ( ( A  =  (/)  \/  A  e.  Inacc )  ->  ( R1 `  A )  e. 
Tarski )
6962, 68impbid1 203 1  |-  ( A  e.  On  ->  (
( R1 `  A
)  e.  Tarski  <->  ( A  =  (/)  \/  A  e. 
Inacc ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732    C_ wss 3389   (/)c0 3711   U.cuni 4163   class class class wbr 4367   Oncon0 4792   suc csuc 4794   dom cdm 4913   "cima 4916    Fn wfn 5491   ` cfv 5496    ~~ cen 7432    ~< csdm 7434   R1cr1 8093   rankcrnk 8094   cardccrd 8229   Inacccina 8972   Tarskictsk 9037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-ac2 8756
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-smo 6935  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-oi 7850  df-har 7899  df-r1 8095  df-rank 8096  df-card 8233  df-aleph 8234  df-cf 8235  df-acn 8236  df-ac 8410  df-wina 8973  df-ina 8974  df-tsk 9038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator