MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sucg Structured version   Unicode version

Theorem r1sucg 8176
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1sucg  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )

Proof of Theorem r1sucg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rdgsucg 7079 . . 3  |-  ( A  e.  dom  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )  ->  ( rec (
( x  e.  _V  |->  ~P x ) ,  (/) ) `  suc  A )  =  ( ( x  e.  _V  |->  ~P x
) `  ( rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) ) `  A ) ) )
2 df-r1 8171 . . . 4  |-  R1  =  rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) )
32dmeqi 5195 . . 3  |-  dom  R1  =  dom  rec ( ( x  e.  _V  |->  ~P x ) ,  (/) )
41, 3eleq2s 2568 . 2  |-  ( A  e.  dom  R1  ->  ( rec ( ( x  e.  _V  |->  ~P x
) ,  (/) ) `  suc  A )  =  ( ( x  e.  _V  |->  ~P x ) `  ( rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) ) `  A ) ) )
52fveq1i 5858 . 2  |-  ( R1
`  suc  A )  =  ( rec (
( x  e.  _V  |->  ~P x ) ,  (/) ) `  suc  A )
6 fvex 5867 . . . 4  |-  ( R1
`  A )  e. 
_V
7 pweq 4006 . . . . 5  |-  ( x  =  ( R1 `  A )  ->  ~P x  =  ~P ( R1 `  A ) )
8 eqid 2460 . . . . 5  |-  ( x  e.  _V  |->  ~P x
)  =  ( x  e.  _V  |->  ~P x
)
96pwex 4623 . . . . 5  |-  ~P ( R1 `  A )  e. 
_V
107, 8, 9fvmpt 5941 . . . 4  |-  ( ( R1 `  A )  e.  _V  ->  (
( x  e.  _V  |->  ~P x ) `  ( R1 `  A ) )  =  ~P ( R1
`  A ) )
116, 10ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  ~P x ) `  ( R1 `  A ) )  =  ~P ( R1
`  A )
122fveq1i 5858 . . . 4  |-  ( R1
`  A )  =  ( rec ( ( x  e.  _V  |->  ~P x ) ,  (/) ) `  A )
1312fveq2i 5860 . . 3  |-  ( ( x  e.  _V  |->  ~P x ) `  ( R1 `  A ) )  =  ( ( x  e.  _V  |->  ~P x
) `  ( rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) ) `  A ) )
1411, 13eqtr3i 2491 . 2  |-  ~P ( R1 `  A )  =  ( ( x  e. 
_V  |->  ~P x ) `  ( rec ( ( x  e.  _V  |->  ~P x
) ,  (/) ) `  A ) )
154, 5, 143eqtr4g 2526 1  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   _Vcvv 3106   (/)c0 3778   ~Pcpw 4003    |-> cmpt 4498   suc csuc 4873   dom cdm 4992   ` cfv 5579   reccrdg 7065   R1cr1 8169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-recs 7032  df-rdg 7066  df-r1 8171
This theorem is referenced by:  r1suc  8177  r1fin  8180  r1tr  8183  r1ordg  8185  r1pwss  8191  r1val1  8193  rankwflemb  8200  r1elwf  8203  rankr1ai  8205  rankr1bg  8210  pwwf  8214  unwf  8217  uniwf  8226  rankonidlem  8235  rankr1id  8269
  Copyright terms: Public domain W3C validator