MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sdom Structured version   Visualization version   Unicode version

Theorem r1sdom 8242
Description: Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r1sdom  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ( R1 `  B
)  ~<  ( R1 `  A ) )

Proof of Theorem r1sdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2517 . . . 4  |-  ( x  =  (/)  ->  ( B  e.  x  <->  B  e.  (/) ) )
2 fveq2 5863 . . . . 5  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
32breq2d 4413 . . . 4  |-  ( x  =  (/)  ->  ( ( R1 `  B ) 
~<  ( R1 `  x
)  <->  ( R1 `  B )  ~<  ( R1 `  (/) ) ) )
41, 3imbi12d 322 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  x  -> 
( R1 `  B
)  ~<  ( R1 `  x ) )  <->  ( B  e.  (/)  ->  ( R1 `  B )  ~<  ( R1 `  (/) ) ) ) )
5 eleq2 2517 . . . 4  |-  ( x  =  y  ->  ( B  e.  x  <->  B  e.  y ) )
6 fveq2 5863 . . . . 5  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
76breq2d 4413 . . . 4  |-  ( x  =  y  ->  (
( R1 `  B
)  ~<  ( R1 `  x )  <->  ( R1 `  B )  ~<  ( R1 `  y ) ) )
85, 7imbi12d 322 . . 3  |-  ( x  =  y  ->  (
( B  e.  x  ->  ( R1 `  B
)  ~<  ( R1 `  x ) )  <->  ( B  e.  y  ->  ( R1
`  B )  ~< 
( R1 `  y
) ) ) )
9 eleq2 2517 . . . 4  |-  ( x  =  suc  y  -> 
( B  e.  x  <->  B  e.  suc  y ) )
10 fveq2 5863 . . . . 5  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
1110breq2d 4413 . . . 4  |-  ( x  =  suc  y  -> 
( ( R1 `  B )  ~<  ( R1 `  x )  <->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) )
129, 11imbi12d 322 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e.  x  ->  ( R1 `  B )  ~<  ( R1 `  x ) )  <-> 
( B  e.  suc  y  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
13 eleq2 2517 . . . 4  |-  ( x  =  A  ->  ( B  e.  x  <->  B  e.  A ) )
14 fveq2 5863 . . . . 5  |-  ( x  =  A  ->  ( R1 `  x )  =  ( R1 `  A
) )
1514breq2d 4413 . . . 4  |-  ( x  =  A  ->  (
( R1 `  B
)  ~<  ( R1 `  x )  <->  ( R1 `  B )  ~<  ( R1 `  A ) ) )
1613, 15imbi12d 322 . . 3  |-  ( x  =  A  ->  (
( B  e.  x  ->  ( R1 `  B
)  ~<  ( R1 `  x ) )  <->  ( B  e.  A  ->  ( R1
`  B )  ~< 
( R1 `  A
) ) ) )
17 noel 3734 . . . 4  |-  -.  B  e.  (/)
1817pm2.21i 135 . . 3  |-  ( B  e.  (/)  ->  ( R1 `  B )  ~<  ( R1 `  (/) ) )
19 elsuci 5488 . . . . 5  |-  ( B  e.  suc  y  -> 
( B  e.  y  \/  B  =  y ) )
20 fvex 5873 . . . . . . . . . . 11  |-  ( R1
`  y )  e. 
_V
2120canth2 7722 . . . . . . . . . 10  |-  ( R1
`  y )  ~<  ~P ( R1 `  y
)
22 r1suc 8238 . . . . . . . . . 10  |-  ( y  e.  On  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
2321, 22syl5breqr 4438 . . . . . . . . 9  |-  ( y  e.  On  ->  ( R1 `  y )  ~< 
( R1 `  suc  y ) )
24 sdomtr 7707 . . . . . . . . . 10  |-  ( ( ( R1 `  B
)  ~<  ( R1 `  y )  /\  ( R1 `  y )  ~< 
( R1 `  suc  y ) )  -> 
( R1 `  B
)  ~<  ( R1 `  suc  y ) )
2524expcom 437 . . . . . . . . 9  |-  ( ( R1 `  y ) 
~<  ( R1 `  suc  y )  ->  (
( R1 `  B
)  ~<  ( R1 `  y )  ->  ( R1 `  B )  ~< 
( R1 `  suc  y ) ) )
2623, 25syl 17 . . . . . . . 8  |-  ( y  e.  On  ->  (
( R1 `  B
)  ~<  ( R1 `  y )  ->  ( R1 `  B )  ~< 
( R1 `  suc  y ) ) )
2726com12 32 . . . . . . 7  |-  ( ( R1 `  B ) 
~<  ( R1 `  y
)  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) )
2827imim2i 16 . . . . . 6  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  e.  y  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
29 fveq2 5863 . . . . . . . . 9  |-  ( B  =  y  ->  ( R1 `  B )  =  ( R1 `  y
) )
3029breq1d 4411 . . . . . . . 8  |-  ( B  =  y  ->  (
( R1 `  B
)  ~<  ( R1 `  suc  y )  <->  ( R1 `  y )  ~<  ( R1 `  suc  y ) ) )
3123, 30syl5ibr 225 . . . . . . 7  |-  ( B  =  y  ->  (
y  e.  On  ->  ( R1 `  B ) 
~<  ( R1 `  suc  y ) ) )
3231a1i 11 . . . . . 6  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  =  y  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
3328, 32jaod 382 . . . . 5  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( ( B  e.  y  \/  B  =  y )  ->  (
y  e.  On  ->  ( R1 `  B ) 
~<  ( R1 `  suc  y ) ) ) )
3419, 33syl5 33 . . . 4  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  e.  suc  y  ->  ( y  e.  On  ->  ( R1 `  B )  ~<  ( R1 `  suc  y ) ) ) )
3534com3r 82 . . 3  |-  ( y  e.  On  ->  (
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  ->  ( B  e. 
suc  y  ->  ( R1 `  B )  ~< 
( R1 `  suc  y ) ) ) )
36 limuni 5482 . . . . . . 7  |-  ( Lim  x  ->  x  =  U. x )
3736eleq2d 2513 . . . . . 6  |-  ( Lim  x  ->  ( B  e.  x  <->  B  e.  U. x
) )
38 eluni2 4201 . . . . . 6  |-  ( B  e.  U. x  <->  E. y  e.  x  B  e.  y )
3937, 38syl6bb 265 . . . . 5  |-  ( Lim  x  ->  ( B  e.  x  <->  E. y  e.  x  B  e.  y )
)
40 r19.29 2924 . . . . . . 7  |-  ( ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B
)  ~<  ( R1 `  y ) )  /\  E. y  e.  x  B  e.  y )  ->  E. y  e.  x  ( ( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y ) )
41 fvex 5873 . . . . . . . . . . 11  |-  ( R1
`  x )  e. 
_V
4241a1i 11 . . . . . . . . . 10  |-  ( Lim  x  ->  ( R1 `  x )  e.  _V )
43 ssiun2 4320 . . . . . . . . . . 11  |-  ( y  e.  x  ->  ( R1 `  y )  C_  U_ y  e.  x  ( R1 `  y ) )
44 vex 3047 . . . . . . . . . . . . 13  |-  x  e. 
_V
45 r1lim 8240 . . . . . . . . . . . . 13  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( R1 `  x )  = 
U_ y  e.  x  ( R1 `  y ) )
4644, 45mpan 675 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y ) )
4746sseq2d 3459 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( ( R1 `  y )  C_  ( R1 `  x )  <-> 
( R1 `  y
)  C_  U_ y  e.  x  ( R1 `  y ) ) )
4843, 47syl5ibr 225 . . . . . . . . . 10  |-  ( Lim  x  ->  ( y  e.  x  ->  ( R1
`  y )  C_  ( R1 `  x ) ) )
49 ssdomg 7612 . . . . . . . . . 10  |-  ( ( R1 `  x )  e.  _V  ->  (
( R1 `  y
)  C_  ( R1 `  x )  ->  ( R1 `  y )  ~<_  ( R1 `  x ) ) )
5042, 48, 49sylsyld 58 . . . . . . . . 9  |-  ( Lim  x  ->  ( y  e.  x  ->  ( R1
`  y )  ~<_  ( R1 `  x ) ) )
51 id 22 . . . . . . . . . . 11  |-  ( ( B  e.  y  -> 
( R1 `  B
)  ~<  ( R1 `  y ) )  -> 
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) ) )
5251imp 431 . . . . . . . . . 10  |-  ( ( ( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  y ) )
53 sdomdomtr 7702 . . . . . . . . . . 11  |-  ( ( ( R1 `  B
)  ~<  ( R1 `  y )  /\  ( R1 `  y )  ~<_  ( R1 `  x ) )  ->  ( R1 `  B )  ~<  ( R1 `  x ) )
5453expcom 437 . . . . . . . . . 10  |-  ( ( R1 `  y )  ~<_  ( R1 `  x
)  ->  ( ( R1 `  B )  ~< 
( R1 `  y
)  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) )
5552, 54syl5 33 . . . . . . . . 9  |-  ( ( R1 `  y )  ~<_  ( R1 `  x
)  ->  ( (
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) )
5650, 55syl6 34 . . . . . . . 8  |-  ( Lim  x  ->  ( y  e.  x  ->  ( ( ( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) ) )
5756rexlimdv 2876 . . . . . . 7  |-  ( Lim  x  ->  ( E. y  e.  x  (
( B  e.  y  ->  ( R1 `  B )  ~<  ( R1 `  y ) )  /\  B  e.  y )  ->  ( R1 `  B )  ~<  ( R1 `  x ) ) )
5840, 57syl5 33 . . . . . 6  |-  ( Lim  x  ->  ( ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B
)  ~<  ( R1 `  y ) )  /\  E. y  e.  x  B  e.  y )  -> 
( R1 `  B
)  ~<  ( R1 `  x ) ) )
5958expcomd 440 . . . . 5  |-  ( Lim  x  ->  ( E. y  e.  x  B  e.  y  ->  ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B ) 
~<  ( R1 `  y
) )  ->  ( R1 `  B )  ~< 
( R1 `  x
) ) ) )
6039, 59sylbid 219 . . . 4  |-  ( Lim  x  ->  ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B ) 
~<  ( R1 `  y
) )  ->  ( R1 `  B )  ~< 
( R1 `  x
) ) ) )
6160com23 81 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ( R1 `  B ) 
~<  ( R1 `  y
) )  ->  ( B  e.  x  ->  ( R1 `  B ) 
~<  ( R1 `  x
) ) ) )
624, 8, 12, 16, 18, 35, 61tfinds 6683 . 2  |-  ( A  e.  On  ->  ( B  e.  A  ->  ( R1 `  B ) 
~<  ( R1 `  A
) ) )
6362imp 431 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ( R1 `  B
)  ~<  ( R1 `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 370    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737   _Vcvv 3044    C_ wss 3403   (/)c0 3730   ~Pcpw 3950   U.cuni 4197   U_ciun 4277   class class class wbr 4401   Oncon0 5422   Lim wlim 5423   suc csuc 5424   ` cfv 5581    ~<_ cdom 7564    ~< csdm 7565   R1cr1 8230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-r1 8232
This theorem is referenced by:  r111  8243  smobeth  9008  r1tskina  9204
  Copyright terms: Public domain W3C validator