MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Unicode version

Theorem r1pwss 8201
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )

Proof of Theorem r1pwss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8183 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 462 . . . . . 6  |-  Lim  dom  R1
3 limord 4937 . . . . . 6  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . . . 5  |-  Ord  dom  R1
5 ordsson 6604 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 5 . . . 4  |-  dom  R1  C_  On
7 elfvdm 5891 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  B  e.  dom  R1 )
86, 7sseldi 3502 . . 3  |-  ( A  e.  ( R1 `  B )  ->  B  e.  On )
9 onzsl 6660 . . 3  |-  ( B  e.  On  <->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B
) ) )
108, 9sylib 196 . 2  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B ) ) )
11 noel 3789 . . . . 5  |-  -.  A  e.  (/)
12 fveq2 5865 . . . . . . . 8  |-  ( B  =  (/)  ->  ( R1
`  B )  =  ( R1 `  (/) ) )
13 r10 8185 . . . . . . . 8  |-  ( R1
`  (/) )  =  (/)
1412, 13syl6eq 2524 . . . . . . 7  |-  ( B  =  (/)  ->  ( R1
`  B )  =  (/) )
1514eleq2d 2537 . . . . . 6  |-  ( B  =  (/)  ->  ( A  e.  ( R1 `  B )  <->  A  e.  (/) ) )
1615biimpcd 224 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  A  e.  (/) ) )
1711, 16mtoi 178 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  -.  B  =  (/) )
1817pm2.21d 106 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  ~P A  C_  ( R1 `  B ) ) )
19 simpl 457 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ( R1 `  B ) )
20 simpr 461 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  =  suc  x )
2120fveq2d 5869 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ( R1 `  suc  x
) )
227adantr 465 . . . . . . . . . . . 12  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  e.  dom  R1 )
2320, 22eqeltrrd 2556 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  suc  x  e.  dom  R1 )
24 limsuc 6663 . . . . . . . . . . . 12  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
252, 24ax-mp 5 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2623, 25sylibr 212 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  x  e.  dom  R1 )
27 r1sucg 8186 . . . . . . . . . 10  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
2921, 28eqtrd 2508 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ~P ( R1 `  x ) )
3019, 29eleqtrd 2557 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ~P ( R1 `  x ) )
31 elpwi 4019 . . . . . . . 8  |-  ( A  e.  ~P ( R1
`  x )  ->  A  C_  ( R1 `  x ) )
32 sspwb 4696 . . . . . . . 8  |-  ( A 
C_  ( R1 `  x )  <->  ~P A  C_ 
~P ( R1 `  x ) )
3331, 32sylib 196 . . . . . . 7  |-  ( A  e.  ~P ( R1
`  x )  ->  ~P A  C_  ~P ( R1 `  x ) )
3430, 33syl 16 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ~P ( R1 `  x
) )
3534, 29sseqtr4d 3541 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ( R1 `  B ) )
3635ex 434 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
3736rexlimdvw 2958 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( E. x  e.  On  B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
38 r1tr 8193 . . . . . 6  |-  Tr  ( R1 `  B )
39 simpl 457 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  ( R1 `  B
) )
40 r1limg 8188 . . . . . . . . . . . 12  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ x  e.  B  ( R1 `  x ) )
417, 40sylan 471 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ x  e.  B  ( R1 `  x ) )
4239, 41eleqtrd 2557 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  U_ x  e.  B  ( R1 `  x ) )
43 eliun 4330 . . . . . . . . . 10  |-  ( A  e.  U_ x  e.  B  ( R1 `  x )  <->  E. x  e.  B  A  e.  ( R1 `  x ) )
4442, 43sylib 196 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. x  e.  B  A  e.  ( R1 `  x ) )
45 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  B )
46 limsuc 6663 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( x  e.  B  <->  suc  x  e.  B
) )
4746ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( x  e.  B  <->  suc  x  e.  B ) )
4845, 47mpbid 210 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  B )
49 limsuc 6663 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( suc  x  e.  B  <->  suc  suc  x  e.  B ) )
5049ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( suc  x  e.  B 
<->  suc  suc  x  e.  B ) )
5148, 50mpbid 210 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  suc  x  e.  B
)
52 r1tr 8193 . . . . . . . . . . . . . . 15  |-  Tr  ( R1 `  x )
53 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  e.  ( R1 `  x ) )
54 trss 4549 . . . . . . . . . . . . . . 15  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
5552, 53, 54mpsyl 63 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  C_  ( R1 `  x ) )
5655, 32sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ~P ( R1 `  x ) )
577ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  B  e.  dom  R1 )
58 ordtr1 4921 . . . . . . . . . . . . . . . 16  |-  ( Ord 
dom  R1  ->  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
594, 58ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 )
6045, 57, 59syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  dom  R1 )
6160, 27syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  x )  =  ~P ( R1 `  x ) )
6256, 61sseqtr4d 3541 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ( R1
`  suc  x )
)
63 fvex 5875 . . . . . . . . . . . . 13  |-  ( R1
`  suc  x )  e.  _V
6463elpw2 4611 . . . . . . . . . . . 12  |-  ( ~P A  e.  ~P ( R1 `  suc  x )  <->  ~P A  C_  ( R1
`  suc  x )
)
6562, 64sylibr 212 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ~P ( R1 `  suc  x
) )
6660, 25sylib 196 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  dom  R1 )
67 r1sucg 8186 . . . . . . . . . . . 12  |-  ( suc  x  e.  dom  R1  ->  ( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6965, 68eleqtrrd 2558 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ( R1 `  suc  suc  x
) )
70 fveq2 5865 . . . . . . . . . . . 12  |-  ( y  =  suc  suc  x  ->  ( R1 `  y
)  =  ( R1
`  suc  suc  x ) )
7170eleq2d 2537 . . . . . . . . . . 11  |-  ( y  =  suc  suc  x  ->  ( ~P A  e.  ( R1 `  y
)  <->  ~P A  e.  ( R1 `  suc  suc  x ) ) )
7271rspcev 3214 . . . . . . . . . 10  |-  ( ( suc  suc  x  e.  B  /\  ~P A  e.  ( R1 `  suc  suc  x ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7351, 69, 72syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7444, 73rexlimddv 2959 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
75 eliun 4330 . . . . . . . 8  |-  ( ~P A  e.  U_ y  e.  B  ( R1 `  y )  <->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
7674, 75sylibr 212 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  U_ y  e.  B  ( R1 `  y ) )
77 r1limg 8188 . . . . . . . 8  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ y  e.  B  ( R1 `  y ) )
787, 77sylan 471 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ y  e.  B  ( R1 `  y ) )
7976, 78eleqtrrd 2558 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  ( R1 `  B ) )
80 trss 4549 . . . . . 6  |-  ( Tr  ( R1 `  B
)  ->  ( ~P A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) ) )
8138, 79, 80mpsyl 63 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  C_  ( R1 `  B ) )
8281ex 434 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( Lim  B  ->  ~P A  C_  ( R1 `  B
) ) )
8382adantld 467 . . 3  |-  ( A  e.  ( R1 `  B )  ->  (
( B  e.  _V  /\ 
Lim  B )  ->  ~P A  C_  ( R1
`  B ) ) )
8418, 37, 833jaod 1292 . 2  |-  ( A  e.  ( R1 `  B )  ->  (
( B  =  (/)  \/ 
E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\ 
Lim  B ) )  ->  ~P A  C_  ( R1 `  B ) ) )
8510, 84mpd 15 1  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972    = wceq 1379    e. wcel 1767   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U_ciun 4325   Tr wtr 4540   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880   dom cdm 4999   Fun wfun 5581   ` cfv 5587   R1cr1 8179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-om 6680  df-recs 7042  df-rdg 7076  df-r1 8181
This theorem is referenced by:  r1sscl  8202
  Copyright terms: Public domain W3C validator