MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Unicode version

Theorem r1pwss 8003
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )

Proof of Theorem r1pwss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 7985 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 462 . . . . . 6  |-  Lim  dom  R1
3 limord 4790 . . . . . 6  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . . . 5  |-  Ord  dom  R1
5 ordsson 6413 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 5 . . . 4  |-  dom  R1  C_  On
7 elfvdm 5728 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  B  e.  dom  R1 )
86, 7sseldi 3366 . . 3  |-  ( A  e.  ( R1 `  B )  ->  B  e.  On )
9 onzsl 6469 . . 3  |-  ( B  e.  On  <->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B
) ) )
108, 9sylib 196 . 2  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B ) ) )
11 noel 3653 . . . . 5  |-  -.  A  e.  (/)
12 fveq2 5703 . . . . . . . 8  |-  ( B  =  (/)  ->  ( R1
`  B )  =  ( R1 `  (/) ) )
13 r10 7987 . . . . . . . 8  |-  ( R1
`  (/) )  =  (/)
1412, 13syl6eq 2491 . . . . . . 7  |-  ( B  =  (/)  ->  ( R1
`  B )  =  (/) )
1514eleq2d 2510 . . . . . 6  |-  ( B  =  (/)  ->  ( A  e.  ( R1 `  B )  <->  A  e.  (/) ) )
1615biimpcd 224 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  A  e.  (/) ) )
1711, 16mtoi 178 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  -.  B  =  (/) )
1817pm2.21d 106 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  ~P A  C_  ( R1 `  B ) ) )
19 simpl 457 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ( R1 `  B ) )
20 simpr 461 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  =  suc  x )
2120fveq2d 5707 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ( R1 `  suc  x
) )
227adantr 465 . . . . . . . . . . . 12  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  e.  dom  R1 )
2320, 22eqeltrrd 2518 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  suc  x  e.  dom  R1 )
24 limsuc 6472 . . . . . . . . . . . 12  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
252, 24ax-mp 5 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2623, 25sylibr 212 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  x  e.  dom  R1 )
27 r1sucg 7988 . . . . . . . . . 10  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
2921, 28eqtrd 2475 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ~P ( R1 `  x ) )
3019, 29eleqtrd 2519 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ~P ( R1 `  x ) )
31 elpwi 3881 . . . . . . . 8  |-  ( A  e.  ~P ( R1
`  x )  ->  A  C_  ( R1 `  x ) )
32 sspwb 4553 . . . . . . . 8  |-  ( A 
C_  ( R1 `  x )  <->  ~P A  C_ 
~P ( R1 `  x ) )
3331, 32sylib 196 . . . . . . 7  |-  ( A  e.  ~P ( R1
`  x )  ->  ~P A  C_  ~P ( R1 `  x ) )
3430, 33syl 16 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ~P ( R1 `  x
) )
3534, 29sseqtr4d 3405 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ( R1 `  B ) )
3635ex 434 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
3736rexlimdvw 2856 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( E. x  e.  On  B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
38 r1tr 7995 . . . . . 6  |-  Tr  ( R1 `  B )
39 simpl 457 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  ( R1 `  B
) )
40 r1limg 7990 . . . . . . . . . . . 12  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ x  e.  B  ( R1 `  x ) )
417, 40sylan 471 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ x  e.  B  ( R1 `  x ) )
4239, 41eleqtrd 2519 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  U_ x  e.  B  ( R1 `  x ) )
43 eliun 4187 . . . . . . . . . 10  |-  ( A  e.  U_ x  e.  B  ( R1 `  x )  <->  E. x  e.  B  A  e.  ( R1 `  x ) )
4442, 43sylib 196 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. x  e.  B  A  e.  ( R1 `  x ) )
45 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  B )
46 limsuc 6472 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( x  e.  B  <->  suc  x  e.  B
) )
4746ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( x  e.  B  <->  suc  x  e.  B ) )
4845, 47mpbid 210 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  B )
49 limsuc 6472 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( suc  x  e.  B  <->  suc  suc  x  e.  B ) )
5049ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( suc  x  e.  B 
<->  suc  suc  x  e.  B ) )
5148, 50mpbid 210 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  suc  x  e.  B
)
52 r1tr 7995 . . . . . . . . . . . . . . 15  |-  Tr  ( R1 `  x )
53 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  e.  ( R1 `  x ) )
54 trss 4406 . . . . . . . . . . . . . . 15  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
5552, 53, 54mpsyl 63 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  C_  ( R1 `  x ) )
5655, 32sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ~P ( R1 `  x ) )
577ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  B  e.  dom  R1 )
58 ordtr1 4774 . . . . . . . . . . . . . . . 16  |-  ( Ord 
dom  R1  ->  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
594, 58ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 )
6045, 57, 59syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  dom  R1 )
6160, 27syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  x )  =  ~P ( R1 `  x ) )
6256, 61sseqtr4d 3405 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ( R1
`  suc  x )
)
63 fvex 5713 . . . . . . . . . . . . 13  |-  ( R1
`  suc  x )  e.  _V
6463elpw2 4468 . . . . . . . . . . . 12  |-  ( ~P A  e.  ~P ( R1 `  suc  x )  <->  ~P A  C_  ( R1
`  suc  x )
)
6562, 64sylibr 212 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ~P ( R1 `  suc  x
) )
6660, 25sylib 196 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  dom  R1 )
67 r1sucg 7988 . . . . . . . . . . . 12  |-  ( suc  x  e.  dom  R1  ->  ( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6965, 68eleqtrrd 2520 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ( R1 `  suc  suc  x
) )
70 fveq2 5703 . . . . . . . . . . . 12  |-  ( y  =  suc  suc  x  ->  ( R1 `  y
)  =  ( R1
`  suc  suc  x ) )
7170eleq2d 2510 . . . . . . . . . . 11  |-  ( y  =  suc  suc  x  ->  ( ~P A  e.  ( R1 `  y
)  <->  ~P A  e.  ( R1 `  suc  suc  x ) ) )
7271rspcev 3085 . . . . . . . . . 10  |-  ( ( suc  suc  x  e.  B  /\  ~P A  e.  ( R1 `  suc  suc  x ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7351, 69, 72syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7444, 73rexlimddv 2857 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
75 eliun 4187 . . . . . . . 8  |-  ( ~P A  e.  U_ y  e.  B  ( R1 `  y )  <->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
7674, 75sylibr 212 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  U_ y  e.  B  ( R1 `  y ) )
77 r1limg 7990 . . . . . . . 8  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ y  e.  B  ( R1 `  y ) )
787, 77sylan 471 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ y  e.  B  ( R1 `  y ) )
7976, 78eleqtrrd 2520 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  ( R1 `  B ) )
80 trss 4406 . . . . . 6  |-  ( Tr  ( R1 `  B
)  ->  ( ~P A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) ) )
8138, 79, 80mpsyl 63 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  C_  ( R1 `  B ) )
8281ex 434 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( Lim  B  ->  ~P A  C_  ( R1 `  B
) ) )
8382adantld 467 . . 3  |-  ( A  e.  ( R1 `  B )  ->  (
( B  e.  _V  /\ 
Lim  B )  ->  ~P A  C_  ( R1
`  B ) ) )
8418, 37, 833jaod 1282 . 2  |-  ( A  e.  ( R1 `  B )  ->  (
( B  =  (/)  \/ 
E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\ 
Lim  B ) )  ->  ~P A  C_  ( R1 `  B ) ) )
8510, 84mpd 15 1  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    = wceq 1369    e. wcel 1756   E.wrex 2728   _Vcvv 2984    C_ wss 3340   (/)c0 3649   ~Pcpw 3872   U_ciun 4183   Tr wtr 4397   Ord word 4730   Oncon0 4731   Lim wlim 4732   suc csuc 4733   dom cdm 4852   Fun wfun 5424   ` cfv 5430   R1cr1 7981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-om 6489  df-recs 6844  df-rdg 6878  df-r1 7983
This theorem is referenced by:  r1sscl  8004
  Copyright terms: Public domain W3C validator