MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Visualization version   Unicode version

Theorem r1pwss 8273
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )

Proof of Theorem r1pwss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8255 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 469 . . . . . 6  |-  Lim  dom  R1
3 limord 5489 . . . . . 6  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 5 . . . . 5  |-  Ord  dom  R1
5 ordsson 6635 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 5 . . . 4  |-  dom  R1  C_  On
7 elfvdm 5905 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  B  e.  dom  R1 )
86, 7sseldi 3416 . . 3  |-  ( A  e.  ( R1 `  B )  ->  B  e.  On )
9 onzsl 6692 . . 3  |-  ( B  e.  On  <->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B
) ) )
108, 9sylib 201 . 2  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  \/  E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\  Lim  B ) ) )
11 noel 3726 . . . . 5  |-  -.  A  e.  (/)
12 fveq2 5879 . . . . . . . 8  |-  ( B  =  (/)  ->  ( R1
`  B )  =  ( R1 `  (/) ) )
13 r10 8257 . . . . . . . 8  |-  ( R1
`  (/) )  =  (/)
1412, 13syl6eq 2521 . . . . . . 7  |-  ( B  =  (/)  ->  ( R1
`  B )  =  (/) )
1514eleq2d 2534 . . . . . 6  |-  ( B  =  (/)  ->  ( A  e.  ( R1 `  B )  <->  A  e.  (/) ) )
1615biimpcd 232 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  A  e.  (/) ) )
1711, 16mtoi 183 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  -.  B  =  (/) )
1817pm2.21d 109 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  (/)  ->  ~P A  C_  ( R1 `  B ) ) )
19 simpl 464 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ( R1 `  B ) )
20 simpr 468 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  =  suc  x )
2120fveq2d 5883 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ( R1 `  suc  x
) )
227adantr 472 . . . . . . . . . . . 12  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  B  e.  dom  R1 )
2320, 22eqeltrrd 2550 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  suc  x  e.  dom  R1 )
24 limsuc 6695 . . . . . . . . . . . 12  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
252, 24ax-mp 5 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2623, 25sylibr 217 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  x  e.  dom  R1 )
27 r1sucg 8258 . . . . . . . . . 10  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2826, 27syl 17 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
2921, 28eqtrd 2505 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ( R1 `  B )  =  ~P ( R1 `  x ) )
3019, 29eleqtrd 2551 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  A  e.  ~P ( R1 `  x ) )
31 elpwi 3951 . . . . . . . 8  |-  ( A  e.  ~P ( R1
`  x )  ->  A  C_  ( R1 `  x ) )
32 sspwb 4649 . . . . . . . 8  |-  ( A 
C_  ( R1 `  x )  <->  ~P A  C_ 
~P ( R1 `  x ) )
3331, 32sylib 201 . . . . . . 7  |-  ( A  e.  ~P ( R1
`  x )  ->  ~P A  C_  ~P ( R1 `  x ) )
3430, 33syl 17 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ~P ( R1 `  x
) )
3534, 29sseqtr4d 3455 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  B  =  suc  x )  ->  ~P A  C_  ( R1 `  B ) )
3635ex 441 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
3736rexlimdvw 2874 . . 3  |-  ( A  e.  ( R1 `  B )  ->  ( E. x  e.  On  B  =  suc  x  ->  ~P A  C_  ( R1
`  B ) ) )
38 r1tr 8265 . . . . . 6  |-  Tr  ( R1 `  B )
39 simpl 464 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  ( R1 `  B
) )
40 r1limg 8260 . . . . . . . . . . . 12  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ x  e.  B  ( R1 `  x ) )
417, 40sylan 479 . . . . . . . . . . 11  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ x  e.  B  ( R1 `  x ) )
4239, 41eleqtrd 2551 . . . . . . . . . 10  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  A  e.  U_ x  e.  B  ( R1 `  x ) )
43 eliun 4274 . . . . . . . . . 10  |-  ( A  e.  U_ x  e.  B  ( R1 `  x )  <->  E. x  e.  B  A  e.  ( R1 `  x ) )
4442, 43sylib 201 . . . . . . . . 9  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. x  e.  B  A  e.  ( R1 `  x ) )
45 simprl 772 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  B )
46 limsuc 6695 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( x  e.  B  <->  suc  x  e.  B
) )
4746ad2antlr 741 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( x  e.  B  <->  suc  x  e.  B ) )
4845, 47mpbid 215 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  B )
49 limsuc 6695 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( suc  x  e.  B  <->  suc  suc  x  e.  B ) )
5049ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( suc  x  e.  B 
<->  suc  suc  x  e.  B ) )
5148, 50mpbid 215 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  suc  x  e.  B
)
52 r1tr 8265 . . . . . . . . . . . . . . 15  |-  Tr  ( R1 `  x )
53 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  e.  ( R1 `  x ) )
54 trss 4499 . . . . . . . . . . . . . . 15  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
5552, 53, 54mpsyl 64 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  A  C_  ( R1 `  x ) )
5655, 32sylib 201 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ~P ( R1 `  x ) )
577ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  B  e.  dom  R1 )
58 ordtr1 5473 . . . . . . . . . . . . . . . 16  |-  ( Ord 
dom  R1  ->  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
594, 58ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  B  /\  B  e.  dom  R1 )  ->  x  e.  dom  R1 )
6045, 57, 59syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  x  e.  dom  R1 )
6160, 27syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  x )  =  ~P ( R1 `  x ) )
6256, 61sseqtr4d 3455 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  C_  ( R1
`  suc  x )
)
63 fvex 5889 . . . . . . . . . . . . 13  |-  ( R1
`  suc  x )  e.  _V
6463elpw2 4565 . . . . . . . . . . . 12  |-  ( ~P A  e.  ~P ( R1 `  suc  x )  <->  ~P A  C_  ( R1
`  suc  x )
)
6562, 64sylibr 217 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ~P ( R1 `  suc  x
) )
6660, 25sylib 201 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  suc  x  e.  dom  R1 )
67 r1sucg 8258 . . . . . . . . . . . 12  |-  ( suc  x  e.  dom  R1  ->  ( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6866, 67syl 17 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  -> 
( R1 `  suc  suc  x )  =  ~P ( R1 `  suc  x
) )
6965, 68eleqtrrd 2552 . . . . . . . . . 10  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  ~P A  e.  ( R1 `  suc  suc  x
) )
70 fveq2 5879 . . . . . . . . . . . 12  |-  ( y  =  suc  suc  x  ->  ( R1 `  y
)  =  ( R1
`  suc  suc  x ) )
7170eleq2d 2534 . . . . . . . . . . 11  |-  ( y  =  suc  suc  x  ->  ( ~P A  e.  ( R1 `  y
)  <->  ~P A  e.  ( R1 `  suc  suc  x ) ) )
7271rspcev 3136 . . . . . . . . . 10  |-  ( ( suc  suc  x  e.  B  /\  ~P A  e.  ( R1 `  suc  suc  x ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7351, 69, 72syl2anc 673 . . . . . . . . 9  |-  ( ( ( A  e.  ( R1 `  B )  /\  Lim  B )  /\  ( x  e.  B  /\  A  e.  ( R1 `  x
) ) )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y ) )
7444, 73rexlimddv 2875 . . . . . . . 8  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
75 eliun 4274 . . . . . . . 8  |-  ( ~P A  e.  U_ y  e.  B  ( R1 `  y )  <->  E. y  e.  B  ~P A  e.  ( R1 `  y
) )
7674, 75sylibr 217 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  U_ y  e.  B  ( R1 `  y ) )
77 r1limg 8260 . . . . . . . 8  |-  ( ( B  e.  dom  R1  /\ 
Lim  B )  -> 
( R1 `  B
)  =  U_ y  e.  B  ( R1 `  y ) )
787, 77sylan 479 . . . . . . 7  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ( R1 `  B )  = 
U_ y  e.  B  ( R1 `  y ) )
7976, 78eleqtrrd 2552 . . . . . 6  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  e.  ( R1 `  B ) )
80 trss 4499 . . . . . 6  |-  ( Tr  ( R1 `  B
)  ->  ( ~P A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) ) )
8138, 79, 80mpsyl 64 . . . . 5  |-  ( ( A  e.  ( R1
`  B )  /\  Lim  B )  ->  ~P A  C_  ( R1 `  B ) )
8281ex 441 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( Lim  B  ->  ~P A  C_  ( R1 `  B
) ) )
8382adantld 474 . . 3  |-  ( A  e.  ( R1 `  B )  ->  (
( B  e.  _V  /\ 
Lim  B )  ->  ~P A  C_  ( R1
`  B ) ) )
8418, 37, 833jaod 1358 . 2  |-  ( A  e.  ( R1 `  B )  ->  (
( B  =  (/)  \/ 
E. x  e.  On  B  =  suc  x  \/  ( B  e.  _V  /\ 
Lim  B ) )  ->  ~P A  C_  ( R1 `  B ) ) )
8510, 84mpd 15 1  |-  ( A  e.  ( R1 `  B )  ->  ~P A  C_  ( R1 `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    \/ w3o 1006    = wceq 1452    e. wcel 1904   E.wrex 2757   _Vcvv 3031    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   U_ciun 4269   Tr wtr 4490   dom cdm 4839   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432   Fun wfun 5583   ` cfv 5589   R1cr1 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-r1 8253
This theorem is referenced by:  r1sscl  8274
  Copyright terms: Public domain W3C validator