MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwALT Structured version   Unicode version

Theorem r1pwALT 8255
Description: Alternate shorter proof of r1pw 8254 based on the additional axioms ax-reg 8010 and ax-inf2 8049. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r1pwALT  |-  ( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )

Proof of Theorem r1pwALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2526 . . . . 5  |-  ( x  =  A  ->  (
x  e.  ( R1
`  B )  <->  A  e.  ( R1 `  B ) ) )
2 pweq 4002 . . . . . 6  |-  ( x  =  A  ->  ~P x  =  ~P A
)
32eleq1d 2523 . . . . 5  |-  ( x  =  A  ->  ( ~P x  e.  ( R1 `  suc  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
41, 3bibi12d 319 . . . 4  |-  ( x  =  A  ->  (
( x  e.  ( R1 `  B )  <->  ~P x  e.  ( R1 `  suc  B ) )  <->  ( A  e.  ( R1 `  B
)  <->  ~P A  e.  ( R1 `  suc  B
) ) ) )
54imbi2d 314 . . 3  |-  ( x  =  A  ->  (
( B  e.  On  ->  ( x  e.  ( R1 `  B )  <->  ~P x  e.  ( R1 `  suc  B ) ) )  <->  ( B  e.  On  ->  ( A  e.  ( R1 `  B
)  <->  ~P A  e.  ( R1 `  suc  B
) ) ) ) )
6 vex 3109 . . . . . . 7  |-  x  e. 
_V
76rankr1a 8245 . . . . . 6  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  ( rank `  x )  e.  B
) )
8 eloni 4877 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
9 ordsucelsuc 6630 . . . . . . 7  |-  ( Ord 
B  ->  ( ( rank `  x )  e.  B  <->  suc  ( rank `  x
)  e.  suc  B
) )
108, 9syl 16 . . . . . 6  |-  ( B  e.  On  ->  (
( rank `  x )  e.  B  <->  suc  ( rank `  x
)  e.  suc  B
) )
117, 10bitrd 253 . . . . 5  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  suc  ( rank `  x )  e.  suc  B ) )
126rankpw 8252 . . . . . 6  |-  ( rank `  ~P x )  =  suc  ( rank `  x
)
1312eleq1i 2531 . . . . 5  |-  ( (
rank `  ~P x
)  e.  suc  B  <->  suc  ( rank `  x
)  e.  suc  B
)
1411, 13syl6bbr 263 . . . 4  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  ( rank `  ~P x )  e. 
suc  B ) )
15 suceloni 6621 . . . . 5  |-  ( B  e.  On  ->  suc  B  e.  On )
166pwex 4620 . . . . . 6  |-  ~P x  e.  _V
1716rankr1a 8245 . . . . 5  |-  ( suc 
B  e.  On  ->  ( ~P x  e.  ( R1 `  suc  B
)  <->  ( rank `  ~P x )  e.  suc  B ) )
1815, 17syl 16 . . . 4  |-  ( B  e.  On  ->  ( ~P x  e.  ( R1 `  suc  B )  <-> 
( rank `  ~P x
)  e.  suc  B
) )
1914, 18bitr4d 256 . . 3  |-  ( B  e.  On  ->  (
x  e.  ( R1
`  B )  <->  ~P x  e.  ( R1 `  suc  B ) ) )
205, 19vtoclg 3164 . 2  |-  ( A  e.  _V  ->  ( B  e.  On  ->  ( A  e.  ( R1
`  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) ) )
21 elex 3115 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  A  e.  _V )
22 elex 3115 . . . . 5  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  ~P A  e.  _V )
23 pwexb 6584 . . . . 5  |-  ( A  e.  _V  <->  ~P A  e.  _V )
2422, 23sylibr 212 . . . 4  |-  ( ~P A  e.  ( R1
`  suc  B )  ->  A  e.  _V )
2521, 24pm5.21ni 350 . . 3  |-  ( -.  A  e.  _V  ->  ( A  e.  ( R1
`  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
2625a1d 25 . 2  |-  ( -.  A  e.  _V  ->  ( B  e.  On  ->  ( A  e.  ( R1
`  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) ) )
2720, 26pm2.61i 164 1  |-  ( B  e.  On  ->  ( A  e.  ( R1 `  B )  <->  ~P A  e.  ( R1 `  suc  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1398    e. wcel 1823   _Vcvv 3106   ~Pcpw 3999   Ord word 4866   Oncon0 4867   suc csuc 4869   ` cfv 5570   R1cr1 8171   rankcrnk 8172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-reg 8010  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-recs 7034  df-rdg 7068  df-r1 8173  df-rank 8174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator