MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Unicode version

Theorem r1ordg 8208
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )

Proof of Theorem r1ordg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  B  e.  dom  R1 )
2 r1funlim 8196 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
32simpri 462 . . . . . . 7  |-  Lim  dom  R1
4 limord 4943 . . . . . . 7  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
53, 4ax-mp 5 . . . . . 6  |-  Ord  dom  R1
6 ordsson 6620 . . . . . 6  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
75, 6ax-mp 5 . . . . 5  |-  dom  R1  C_  On
87sseli 3505 . . . 4  |-  ( B  e.  dom  R1  ->  B  e.  On )
91, 8syl 16 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  B  e.  On )
10 onelon 4909 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
118, 10sylan 471 . . . 4  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  A  e.  On )
12 suceloni 6643 . . . 4  |-  ( A  e.  On  ->  suc  A  e.  On )
1311, 12syl 16 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  suc  A  e.  On )
14 eloni 4894 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
15 ordsucss 6648 . . . . . 6  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
1614, 15syl 16 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
1716imp 429 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  B
)
188, 17sylan 471 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  suc  A  C_  B
)
19 eleq1 2539 . . . . . 6  |-  ( x  =  suc  A  -> 
( x  e.  dom  R1  <->  suc 
A  e.  dom  R1 ) )
20 fveq2 5872 . . . . . . 7  |-  ( x  =  suc  A  -> 
( R1 `  x
)  =  ( R1
`  suc  A )
)
2120eleq2d 2537 . . . . . 6  |-  ( x  =  suc  A  -> 
( ( R1 `  A )  e.  ( R1 `  x )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  A )
) )
2219, 21imbi12d 320 . . . . 5  |-  ( x  =  suc  A  -> 
( ( x  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  x
) )  <->  ( suc  A  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  A ) ) ) )
23 eleq1 2539 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  dom  R1  <->  y  e.  dom  R1 ) )
24 fveq2 5872 . . . . . . 7  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
2524eleq2d 2537 . . . . . 6  |-  ( x  =  y  ->  (
( R1 `  A
)  e.  ( R1
`  x )  <->  ( R1 `  A )  e.  ( R1 `  y ) ) )
2623, 25imbi12d 320 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  x ) )  <-> 
( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) ) ) )
27 eleq1 2539 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  e.  dom  R1  <->  suc  y  e.  dom  R1 ) )
28 fveq2 5872 . . . . . . 7  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
2928eleq2d 2537 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( R1 `  A )  e.  ( R1 `  x )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  y )
) )
3027, 29imbi12d 320 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  x
) )  <->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) ) )
31 eleq1 2539 . . . . . 6  |-  ( x  =  B  ->  (
x  e.  dom  R1  <->  B  e.  dom  R1 ) )
32 fveq2 5872 . . . . . . 7  |-  ( x  =  B  ->  ( R1 `  x )  =  ( R1 `  B
) )
3332eleq2d 2537 . . . . . 6  |-  ( x  =  B  ->  (
( R1 `  A
)  e.  ( R1
`  x )  <->  ( R1 `  A )  e.  ( R1 `  B ) ) )
3431, 33imbi12d 320 . . . . 5  |-  ( x  =  B  ->  (
( x  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  x ) )  <-> 
( B  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  B ) ) ) )
35 fvex 5882 . . . . . . . 8  |-  ( R1
`  A )  e. 
_V
3635pwid 4030 . . . . . . 7  |-  ( R1
`  A )  e. 
~P ( R1 `  A )
37 limsuc 6679 . . . . . . . . 9  |-  ( Lim 
dom  R1  ->  ( A  e.  dom  R1  <->  suc  A  e. 
dom  R1 ) )
383, 37ax-mp 5 . . . . . . . 8  |-  ( A  e.  dom  R1  <->  suc  A  e. 
dom  R1 )
39 r1sucg 8199 . . . . . . . 8  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )
4038, 39sylbir 213 . . . . . . 7  |-  ( suc 
A  e.  dom  R1  ->  ( R1 `  suc  A )  =  ~P ( R1 `  A ) )
4136, 40syl5eleqr 2562 . . . . . 6  |-  ( suc 
A  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  suc  A )
)
4241a1i 11 . . . . 5  |-  ( suc 
A  e.  On  ->  ( suc  A  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  suc  A )
) )
43 limsuc 6679 . . . . . . . 8  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
443, 43ax-mp 5 . . . . . . 7  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
45 r1tr 8206 . . . . . . . . . . 11  |-  Tr  ( R1 `  y )
46 dftr4 4551 . . . . . . . . . . 11  |-  ( Tr  ( R1 `  y
)  <->  ( R1 `  y )  C_  ~P ( R1 `  y ) )
4745, 46mpbi 208 . . . . . . . . . 10  |-  ( R1
`  y )  C_  ~P ( R1 `  y
)
48 r1sucg 8199 . . . . . . . . . 10  |-  ( y  e.  dom  R1  ->  ( R1 `  suc  y
)  =  ~P ( R1 `  y ) )
4947, 48syl5sseqr 3558 . . . . . . . . 9  |-  ( y  e.  dom  R1  ->  ( R1 `  y ) 
C_  ( R1 `  suc  y ) )
5049sseld 3508 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( ( R1 `  A
)  e.  ( R1
`  y )  -> 
( R1 `  A
)  e.  ( R1
`  suc  y )
) )
5150a2i 13 . . . . . . 7  |-  ( ( y  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( y  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  suc  y ) ) )
5244, 51syl5bir 218 . . . . . 6  |-  ( ( y  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) )
5352a1i 11 . . . . 5  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  (
( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) ) )
54 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  C_  x )
55 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  e.  On )
56 sucelon 6647 . . . . . . . . . . . . . 14  |-  ( A  e.  On  <->  suc  A  e.  On )
5755, 56sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  On )
58 limord 4943 . . . . . . . . . . . . . 14  |-  ( Lim  x  ->  Ord  x )
5958ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  Ord  x )
60 ordelsuc 6650 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
6157, 59, 60syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( A  e.  x  <->  suc 
A  C_  x )
)
6254, 61mpbird 232 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  x )
63 limsuc 6679 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
6463ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( A  e.  x  <->  suc 
A  e.  x ) )
6562, 64mpbid 210 . . . . . . . . . 10  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  e.  x )
66 simprr 756 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  x  e.  dom  R1 )
67 ordtr1 4927 . . . . . . . . . . . . . 14  |-  ( Ord 
dom  R1  ->  ( ( A  e.  x  /\  x  e.  dom  R1 )  ->  A  e.  dom  R1 ) )
685, 67ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( A  e.  x  /\  x  e.  dom  R1 )  ->  A  e.  dom  R1 )
6962, 66, 68syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  dom  R1 )
7069, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  suc  A )  =  ~P ( R1 `  A ) )
7136, 70syl5eleqr 2562 . . . . . . . . . 10  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  suc  A )
)
72 fveq2 5872 . . . . . . . . . . . 12  |-  ( y  =  suc  A  -> 
( R1 `  y
)  =  ( R1
`  suc  A )
)
7372eleq2d 2537 . . . . . . . . . . 11  |-  ( y  =  suc  A  -> 
( ( R1 `  A )  e.  ( R1 `  y )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  A )
) )
7473rspcev 3219 . . . . . . . . . 10  |-  ( ( suc  A  e.  x  /\  ( R1 `  A
)  e.  ( R1
`  suc  A )
)  ->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
7565, 71, 74syl2anc 661 . . . . . . . . 9  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
76 eliun 4336 . . . . . . . . 9  |-  ( ( R1 `  A )  e.  U_ y  e.  x  ( R1 `  y )  <->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
7775, 76sylibr 212 . . . . . . . 8  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  U_ y  e.  x  ( R1 `  y ) )
78 simpll 753 . . . . . . . . 9  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  Lim  x )
79 r1limg 8201 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
Lim  x )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
8066, 78, 79syl2anc 661 . . . . . . . 8  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
8177, 80eleqtrrd 2558 . . . . . . 7  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  x ) )
8281expr 615 . . . . . 6  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  (
x  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  x ) ) )
8382a1d 25 . . . . 5  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( A. y  e.  x  ( suc  A  C_  y  ->  ( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) ) )  ->  ( x  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  x
) ) ) )
8422, 26, 30, 34, 42, 53, 83tfindsg 6690 . . . 4  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  B )  ->  ( B  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  B ) ) )
8584impr 619 . . 3  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  ( suc  A  C_  B  /\  B  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  B ) )
869, 13, 18, 1, 85syl22anc 1229 . 2  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  ( R1 `  A )  e.  ( R1 `  B ) )
8786ex 434 1  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818    C_ wss 3481   ~Pcpw 4016   U_ciun 4331   Tr wtr 4546   Ord word 4883   Oncon0 4884   Lim wlim 4885   suc csuc 4886   dom cdm 5005   Fun wfun 5588   ` cfv 5594   R1cr1 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6696  df-recs 7054  df-rdg 7088  df-r1 8194
This theorem is referenced by:  r1ord3g  8209  r1ord  8210
  Copyright terms: Public domain W3C validator