MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Visualization version   Unicode version

Theorem r1ordg 8267
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )

Proof of Theorem r1ordg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 464 . . . 4  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  B  e.  dom  R1 )
2 r1funlim 8255 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
32simpri 469 . . . . . . 7  |-  Lim  dom  R1
4 limord 5489 . . . . . . 7  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
53, 4ax-mp 5 . . . . . 6  |-  Ord  dom  R1
6 ordsson 6635 . . . . . 6  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
75, 6ax-mp 5 . . . . 5  |-  dom  R1  C_  On
87sseli 3414 . . . 4  |-  ( B  e.  dom  R1  ->  B  e.  On )
91, 8syl 17 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  B  e.  On )
10 onelon 5455 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
118, 10sylan 479 . . . 4  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  A  e.  On )
12 suceloni 6659 . . . 4  |-  ( A  e.  On  ->  suc  A  e.  On )
1311, 12syl 17 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  suc  A  e.  On )
14 eloni 5440 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
15 ordsucss 6664 . . . . . 6  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
1614, 15syl 17 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
1716imp 436 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  B
)
188, 17sylan 479 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  suc  A  C_  B
)
19 eleq1 2537 . . . . . 6  |-  ( x  =  suc  A  -> 
( x  e.  dom  R1  <->  suc 
A  e.  dom  R1 ) )
20 fveq2 5879 . . . . . . 7  |-  ( x  =  suc  A  -> 
( R1 `  x
)  =  ( R1
`  suc  A )
)
2120eleq2d 2534 . . . . . 6  |-  ( x  =  suc  A  -> 
( ( R1 `  A )  e.  ( R1 `  x )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  A )
) )
2219, 21imbi12d 327 . . . . 5  |-  ( x  =  suc  A  -> 
( ( x  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  x
) )  <->  ( suc  A  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  A ) ) ) )
23 eleq1 2537 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  dom  R1  <->  y  e.  dom  R1 ) )
24 fveq2 5879 . . . . . . 7  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
2524eleq2d 2534 . . . . . 6  |-  ( x  =  y  ->  (
( R1 `  A
)  e.  ( R1
`  x )  <->  ( R1 `  A )  e.  ( R1 `  y ) ) )
2623, 25imbi12d 327 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  x ) )  <-> 
( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) ) ) )
27 eleq1 2537 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  e.  dom  R1  <->  suc  y  e.  dom  R1 ) )
28 fveq2 5879 . . . . . . 7  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
2928eleq2d 2534 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( R1 `  A )  e.  ( R1 `  x )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  y )
) )
3027, 29imbi12d 327 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  x
) )  <->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) ) )
31 eleq1 2537 . . . . . 6  |-  ( x  =  B  ->  (
x  e.  dom  R1  <->  B  e.  dom  R1 ) )
32 fveq2 5879 . . . . . . 7  |-  ( x  =  B  ->  ( R1 `  x )  =  ( R1 `  B
) )
3332eleq2d 2534 . . . . . 6  |-  ( x  =  B  ->  (
( R1 `  A
)  e.  ( R1
`  x )  <->  ( R1 `  A )  e.  ( R1 `  B ) ) )
3431, 33imbi12d 327 . . . . 5  |-  ( x  =  B  ->  (
( x  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  x ) )  <-> 
( B  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  B ) ) ) )
35 fvex 5889 . . . . . . . 8  |-  ( R1
`  A )  e. 
_V
3635pwid 3956 . . . . . . 7  |-  ( R1
`  A )  e. 
~P ( R1 `  A )
37 limsuc 6695 . . . . . . . . 9  |-  ( Lim 
dom  R1  ->  ( A  e.  dom  R1  <->  suc  A  e. 
dom  R1 ) )
383, 37ax-mp 5 . . . . . . . 8  |-  ( A  e.  dom  R1  <->  suc  A  e. 
dom  R1 )
39 r1sucg 8258 . . . . . . . 8  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )
4038, 39sylbir 218 . . . . . . 7  |-  ( suc 
A  e.  dom  R1  ->  ( R1 `  suc  A )  =  ~P ( R1 `  A ) )
4136, 40syl5eleqr 2556 . . . . . 6  |-  ( suc 
A  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  suc  A )
)
4241a1i 11 . . . . 5  |-  ( suc 
A  e.  On  ->  ( suc  A  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  suc  A )
) )
43 limsuc 6695 . . . . . . . 8  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
443, 43ax-mp 5 . . . . . . 7  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
45 r1tr 8265 . . . . . . . . . . 11  |-  Tr  ( R1 `  y )
46 dftr4 4495 . . . . . . . . . . 11  |-  ( Tr  ( R1 `  y
)  <->  ( R1 `  y )  C_  ~P ( R1 `  y ) )
4745, 46mpbi 213 . . . . . . . . . 10  |-  ( R1
`  y )  C_  ~P ( R1 `  y
)
48 r1sucg 8258 . . . . . . . . . 10  |-  ( y  e.  dom  R1  ->  ( R1 `  suc  y
)  =  ~P ( R1 `  y ) )
4947, 48syl5sseqr 3467 . . . . . . . . 9  |-  ( y  e.  dom  R1  ->  ( R1 `  y ) 
C_  ( R1 `  suc  y ) )
5049sseld 3417 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( ( R1 `  A
)  e.  ( R1
`  y )  -> 
( R1 `  A
)  e.  ( R1
`  suc  y )
) )
5150a2i 14 . . . . . . 7  |-  ( ( y  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( y  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  suc  y ) ) )
5244, 51syl5bir 226 . . . . . 6  |-  ( ( y  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) )
5352a1i 11 . . . . 5  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  (
( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) ) )
54 simprl 772 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  C_  x )
55 simplr 770 . . . . . . . . . . . . . 14  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  e.  On )
56 sucelon 6663 . . . . . . . . . . . . . 14  |-  ( A  e.  On  <->  suc  A  e.  On )
5755, 56sylibr 217 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  On )
58 limord 5489 . . . . . . . . . . . . . 14  |-  ( Lim  x  ->  Ord  x )
5958ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  Ord  x )
60 ordelsuc 6666 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
6157, 59, 60syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( A  e.  x  <->  suc 
A  C_  x )
)
6254, 61mpbird 240 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  x )
63 limsuc 6695 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
6463ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( A  e.  x  <->  suc 
A  e.  x ) )
6562, 64mpbid 215 . . . . . . . . . 10  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  e.  x )
66 simprr 774 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  x  e.  dom  R1 )
67 ordtr1 5473 . . . . . . . . . . . . . 14  |-  ( Ord 
dom  R1  ->  ( ( A  e.  x  /\  x  e.  dom  R1 )  ->  A  e.  dom  R1 ) )
685, 67ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( A  e.  x  /\  x  e.  dom  R1 )  ->  A  e.  dom  R1 )
6962, 66, 68syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  dom  R1 )
7069, 39syl 17 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  suc  A )  =  ~P ( R1 `  A ) )
7136, 70syl5eleqr 2556 . . . . . . . . . 10  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  suc  A )
)
72 fveq2 5879 . . . . . . . . . . . 12  |-  ( y  =  suc  A  -> 
( R1 `  y
)  =  ( R1
`  suc  A )
)
7372eleq2d 2534 . . . . . . . . . . 11  |-  ( y  =  suc  A  -> 
( ( R1 `  A )  e.  ( R1 `  y )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  A )
) )
7473rspcev 3136 . . . . . . . . . 10  |-  ( ( suc  A  e.  x  /\  ( R1 `  A
)  e.  ( R1
`  suc  A )
)  ->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
7565, 71, 74syl2anc 673 . . . . . . . . 9  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
76 eliun 4274 . . . . . . . . 9  |-  ( ( R1 `  A )  e.  U_ y  e.  x  ( R1 `  y )  <->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
7775, 76sylibr 217 . . . . . . . 8  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  U_ y  e.  x  ( R1 `  y ) )
78 simpll 768 . . . . . . . . 9  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  Lim  x )
79 r1limg 8260 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
Lim  x )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
8066, 78, 79syl2anc 673 . . . . . . . 8  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
8177, 80eleqtrrd 2552 . . . . . . 7  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  x ) )
8281expr 626 . . . . . 6  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  (
x  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  x ) ) )
8382a1d 25 . . . . 5  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( A. y  e.  x  ( suc  A  C_  y  ->  ( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) ) )  ->  ( x  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  x
) ) ) )
8422, 26, 30, 34, 42, 53, 83tfindsg 6706 . . . 4  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  B )  ->  ( B  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  B ) ) )
8584impr 631 . . 3  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  ( suc  A  C_  B  /\  B  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  B ) )
869, 13, 18, 1, 85syl22anc 1293 . 2  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  ( R1 `  A )  e.  ( R1 `  B ) )
8786ex 441 1  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757    C_ wss 3390   ~Pcpw 3942   U_ciun 4269   Tr wtr 4490   dom cdm 4839   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432   Fun wfun 5583   ` cfv 5589   R1cr1 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-r1 8253
This theorem is referenced by:  r1ord3g  8268  r1ord  8269
  Copyright terms: Public domain W3C validator