MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Unicode version

Theorem r1om 8655
Description: The set of hereditarily finite sets is countable. See ackbij2 8654 for an explicit bijection that works without Infinity. See also r1omALT 9183. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om  |-  ( R1
`  om )  ~~  om

Proof of Theorem r1om
Dummy variables  a 
b  c  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8092 . . . 4  |-  om  e.  _V
2 limom 6697 . . . 4  |-  Lim  om
3 r1lim 8221 . . . 4  |-  ( ( om  e.  _V  /\  Lim  om )  ->  ( R1 `  om )  = 
U_ a  e.  om  ( R1 `  a ) )
41, 2, 3mp2an 670 . . 3  |-  ( R1
`  om )  =  U_ a  e.  om  ( R1 `  a )
5 r1fnon 8216 . . . 4  |-  R1  Fn  On
6 fnfun 5658 . . . 4  |-  ( R1  Fn  On  ->  Fun  R1 )
7 funiunfv 6140 . . . 4  |-  ( Fun 
R1  ->  U_ a  e.  om  ( R1 `  a )  =  U. ( R1
" om ) )
85, 6, 7mp2b 10 . . 3  |-  U_ a  e.  om  ( R1 `  a )  =  U. ( R1 " om )
94, 8eqtri 2431 . 2  |-  ( R1
`  om )  =  U. ( R1 " om )
10 iuneq1 4284 . . . . . . 7  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ f  e.  a  ( { f }  X.  ~P f ) )
11 sneq 3981 . . . . . . . . 9  |-  ( f  =  b  ->  { f }  =  { b } )
12 pweq 3957 . . . . . . . . 9  |-  ( f  =  b  ->  ~P f  =  ~P b
)
1311, 12xpeq12d 4847 . . . . . . . 8  |-  ( f  =  b  ->  ( { f }  X.  ~P f )  =  ( { b }  X.  ~P b ) )
1413cbviunv 4309 . . . . . . 7  |-  U_ f  e.  a  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b )
1510, 14syl6eq 2459 . . . . . 6  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b ) )
1615fveq2d 5852 . . . . 5  |-  ( e  =  a  ->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f
) )  =  (
card `  U_ b  e.  a  ( { b }  X.  ~P b
) ) )
1716cbvmptv 4486 . . . 4  |-  ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) )  =  ( a  e.  ( ~P
om  i^i  Fin )  |->  ( card `  U_ b  e.  a  ( {
b }  X.  ~P b ) ) )
18 dmeq 5023 . . . . . . . 8  |-  ( c  =  a  ->  dom  c  =  dom  a )
1918pweqd 3959 . . . . . . 7  |-  ( c  =  a  ->  ~P dom  c  =  ~P dom  a )
20 imaeq1 5151 . . . . . . . 8  |-  ( c  =  a  ->  (
c " d )  =  ( a "
d ) )
2120fveq2d 5852 . . . . . . 7  |-  ( c  =  a  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )
2219, 21mpteq12dv 4472 . . . . . 6  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " d ) ) ) )
23 imaeq2 5152 . . . . . . . 8  |-  ( d  =  b  ->  (
a " d )  =  ( a "
b ) )
2423fveq2d 5852 . . . . . . 7  |-  ( d  =  b  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2524cbvmptv 4486 . . . . . 6  |-  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )  =  ( b  e. 
~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2622, 25syl6eq 2459 . . . . 5  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " b ) ) ) )
2726cbvmptv 4486 . . . 4  |-  ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) ) )
28 eqid 2402 . . . 4  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )  =  U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )
2917, 27, 28ackbij2 8654 . . 3  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om
30 fvex 5858 . . . . 5  |-  ( R1
`  om )  e.  _V
319, 30eqeltrri 2487 . . . 4  |-  U. ( R1 " om )  e. 
_V
3231f1oen 7573 . . 3  |-  ( U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om  ->  U. ( R1 " om )  ~~  om )
3329, 32ax-mp 5 . 2  |-  U. ( R1 " om )  ~~  om
349, 33eqbrtri 4413 1  |-  ( R1
`  om )  ~~  om
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405    e. wcel 1842   _Vcvv 3058    i^i cin 3412   (/)c0 3737   ~Pcpw 3954   {csn 3971   U.cuni 4190   U_ciun 4270   class class class wbr 4394    |-> cmpt 4452    X. cxp 4820   dom cdm 4822   "cima 4825   Oncon0 5409   Lim wlim 5410   Fun wfun 5562    Fn wfn 5563   -1-1-onto->wf1o 5567   ` cfv 5568   omcom 6682   reccrdg 7111    ~~ cen 7550   Fincfn 7553   R1cr1 8211   cardccrd 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-r1 8213  df-rank 8214  df-card 8351  df-cda 8579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator