MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Unicode version

Theorem r1om 8525
Description: The set of hereditarily finite sets is countable. See ackbij2 8524 for an explicit bijection that works without Infinity. See also r1omALT 9055. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om  |-  ( R1
`  om )  ~~  om

Proof of Theorem r1om
Dummy variables  a 
b  c  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 7961 . . . 4  |-  om  e.  _V
2 limom 6602 . . . 4  |-  Lim  om
3 r1lim 8091 . . . 4  |-  ( ( om  e.  _V  /\  Lim  om )  ->  ( R1 `  om )  = 
U_ a  e.  om  ( R1 `  a ) )
41, 2, 3mp2an 672 . . 3  |-  ( R1
`  om )  =  U_ a  e.  om  ( R1 `  a )
5 r1fnon 8086 . . . 4  |-  R1  Fn  On
6 fnfun 5617 . . . 4  |-  ( R1  Fn  On  ->  Fun  R1 )
7 funiunfv 6075 . . . 4  |-  ( Fun 
R1  ->  U_ a  e.  om  ( R1 `  a )  =  U. ( R1
" om ) )
85, 6, 7mp2b 10 . . 3  |-  U_ a  e.  om  ( R1 `  a )  =  U. ( R1 " om )
94, 8eqtri 2483 . 2  |-  ( R1
`  om )  =  U. ( R1 " om )
10 iuneq1 4293 . . . . . . 7  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ f  e.  a  ( { f }  X.  ~P f ) )
11 sneq 3996 . . . . . . . . 9  |-  ( f  =  b  ->  { f }  =  { b } )
12 pweq 3972 . . . . . . . . 9  |-  ( f  =  b  ->  ~P f  =  ~P b
)
1311, 12xpeq12d 4974 . . . . . . . 8  |-  ( f  =  b  ->  ( { f }  X.  ~P f )  =  ( { b }  X.  ~P b ) )
1413cbviunv 4318 . . . . . . 7  |-  U_ f  e.  a  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b )
1510, 14syl6eq 2511 . . . . . 6  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b ) )
1615fveq2d 5804 . . . . 5  |-  ( e  =  a  ->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f
) )  =  (
card `  U_ b  e.  a  ( { b }  X.  ~P b
) ) )
1716cbvmptv 4492 . . . 4  |-  ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) )  =  ( a  e.  ( ~P
om  i^i  Fin )  |->  ( card `  U_ b  e.  a  ( {
b }  X.  ~P b ) ) )
18 dmeq 5149 . . . . . . . 8  |-  ( c  =  a  ->  dom  c  =  dom  a )
1918pweqd 3974 . . . . . . 7  |-  ( c  =  a  ->  ~P dom  c  =  ~P dom  a )
20 imaeq1 5273 . . . . . . . 8  |-  ( c  =  a  ->  (
c " d )  =  ( a "
d ) )
2120fveq2d 5804 . . . . . . 7  |-  ( c  =  a  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )
2219, 21mpteq12dv 4479 . . . . . 6  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " d ) ) ) )
23 imaeq2 5274 . . . . . . . 8  |-  ( d  =  b  ->  (
a " d )  =  ( a "
b ) )
2423fveq2d 5804 . . . . . . 7  |-  ( d  =  b  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2524cbvmptv 4492 . . . . . 6  |-  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )  =  ( b  e. 
~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2622, 25syl6eq 2511 . . . . 5  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " b ) ) ) )
2726cbvmptv 4492 . . . 4  |-  ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) ) )
28 eqid 2454 . . . 4  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )  =  U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )
2917, 27, 28ackbij2 8524 . . 3  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om
30 fvex 5810 . . . . 5  |-  ( R1
`  om )  e.  _V
319, 30eqeltrri 2539 . . . 4  |-  U. ( R1 " om )  e. 
_V
3231f1oen 7441 . . 3  |-  ( U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om  ->  U. ( R1 " om )  ~~  om )
3329, 32ax-mp 5 . 2  |-  U. ( R1 " om )  ~~  om
349, 33eqbrtri 4420 1  |-  ( R1
`  om )  ~~  om
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758   _Vcvv 3078    i^i cin 3436   (/)c0 3746   ~Pcpw 3969   {csn 3986   U.cuni 4200   U_ciun 4280   class class class wbr 4401    |-> cmpt 4459   Oncon0 4828   Lim wlim 4829    X. cxp 4947   dom cdm 4949   "cima 4952   Fun wfun 5521    Fn wfn 5522   -1-1-onto->wf1o 5526   ` cfv 5527   omcom 6587   reccrdg 6976    ~~ cen 7418   Fincfn 7421   R1cr1 8081   cardccrd 8217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-2o 7032  df-oadd 7035  df-er 7212  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-r1 8083  df-rank 8084  df-card 8221  df-cda 8449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator