MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limg Structured version   Unicode version

Theorem r1limg 8090
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1limg  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
Distinct variable group:    x, A

Proof of Theorem r1limg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-r1 8083 . . . . 5  |-  R1  =  rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) )
21dmeqi 5150 . . . 4  |-  dom  R1  =  dom  rec ( ( y  e.  _V  |->  ~P y ) ,  (/) )
32eleq2i 2532 . . 3  |-  ( A  e.  dom  R1  <->  A  e.  dom  rec ( ( y  e.  _V  |->  ~P y
) ,  (/) ) )
4 rdglimg 6992 . . 3  |-  ( ( A  e.  dom  rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) )  /\  Lim  A
)  ->  ( rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) ) `  A )  =  U. ( rec ( ( y  e. 
_V  |->  ~P y ) ,  (/) ) " A ) )
53, 4sylanb 472 . 2  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) `  A )  =  U. ( rec (
( y  e.  _V  |->  ~P y ) ,  (/) ) " A ) )
61fveq1i 5801 . 2  |-  ( R1
`  A )  =  ( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) `  A )
7 r1funlim 8085 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
87simpli 458 . . . 4  |-  Fun  R1
9 funiunfv 6075 . . . 4  |-  ( Fun 
R1  ->  U_ x  e.  A  ( R1 `  x )  =  U. ( R1
" A ) )
108, 9ax-mp 5 . . 3  |-  U_ x  e.  A  ( R1 `  x )  =  U. ( R1 " A )
111imaeq1i 5275 . . . 4  |-  ( R1
" A )  =  ( rec ( ( y  e.  _V  |->  ~P y ) ,  (/) ) " A )
1211unieqi 4209 . . 3  |-  U. ( R1 " A )  = 
U. ( rec (
( y  e.  _V  |->  ~P y ) ,  (/) ) " A )
1310, 12eqtri 2483 . 2  |-  U_ x  e.  A  ( R1 `  x )  =  U. ( rec ( ( y  e.  _V  |->  ~P y
) ,  (/) ) " A )
145, 6, 133eqtr4g 2520 1  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078   (/)c0 3746   ~Pcpw 3969   U.cuni 4200   U_ciun 4280    |-> cmpt 4459   Lim wlim 4829   dom cdm 4949   "cima 4952   Fun wfun 5521   ` cfv 5527   reccrdg 6976   R1cr1 8081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-recs 6943  df-rdg 6977  df-r1 8083
This theorem is referenced by:  r1lim  8091  r1tr  8095  r1ordg  8097  r1pwss  8103  r1val1  8105
  Copyright terms: Public domain W3C validator