MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elwf Structured version   Unicode version

Theorem r1elwf 8205
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elwf  |-  ( A  e.  ( R1 `  B )  ->  A  e.  U. ( R1 " On ) )

Proof of Theorem r1elwf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 r1funlim 8175 . . . . . 6  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 462 . . . . 5  |-  Lim  dom  R1
3 limord 4932 . . . . 5  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
4 ordsson 6598 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
52, 3, 4mp2b 10 . . . 4  |-  dom  R1  C_  On
6 elfvdm 5885 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  B  e.  dom  R1 )
75, 6sseldi 3497 . . 3  |-  ( A  e.  ( R1 `  B )  ->  B  e.  On )
8 r1tr 8185 . . . . . 6  |-  Tr  ( R1 `  B )
9 trss 4544 . . . . . 6  |-  ( Tr  ( R1 `  B
)  ->  ( A  e.  ( R1 `  B
)  ->  A  C_  ( R1 `  B ) ) )
108, 9ax-mp 5 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  A  C_  ( R1 `  B
) )
11 elpwg 4013 . . . . 5  |-  ( A  e.  ( R1 `  B )  ->  ( A  e.  ~P ( R1 `  B )  <->  A  C_  ( R1 `  B ) ) )
1210, 11mpbird 232 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  A  e.  ~P ( R1 `  B ) )
13 r1sucg 8178 . . . . 5  |-  ( B  e.  dom  R1  ->  ( R1 `  suc  B
)  =  ~P ( R1 `  B ) )
146, 13syl 16 . . . 4  |-  ( A  e.  ( R1 `  B )  ->  ( R1 `  suc  B )  =  ~P ( R1
`  B ) )
1512, 14eleqtrrd 2553 . . 3  |-  ( A  e.  ( R1 `  B )  ->  A  e.  ( R1 `  suc  B ) )
16 suceq 4938 . . . . . 6  |-  ( x  =  B  ->  suc  x  =  suc  B )
1716fveq2d 5863 . . . . 5  |-  ( x  =  B  ->  ( R1 `  suc  x )  =  ( R1 `  suc  B ) )
1817eleq2d 2532 . . . 4  |-  ( x  =  B  ->  ( A  e.  ( R1 ` 
suc  x )  <->  A  e.  ( R1 `  suc  B
) ) )
1918rspcev 3209 . . 3  |-  ( ( B  e.  On  /\  A  e.  ( R1 ` 
suc  B ) )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
207, 15, 19syl2anc 661 . 2  |-  ( A  e.  ( R1 `  B )  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
21 rankwflemb 8202 . 2  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
2220, 21sylibr 212 1  |-  ( A  e.  ( R1 `  B )  ->  A  e.  U. ( R1 " On ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   E.wrex 2810    C_ wss 3471   ~Pcpw 4005   U.cuni 4240   Tr wtr 4535   Ord word 4872   Oncon0 4873   Lim wlim 4874   suc csuc 4875   dom cdm 4994   "cima 4997   Fun wfun 5575   ` cfv 5581   R1cr1 8171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6674  df-recs 7034  df-rdg 7068  df-r1 8173
This theorem is referenced by:  rankr1ai  8207  pwwf  8216  sswf  8217  unwf  8219  uniwf  8228  rankonidlem  8237  r1pw  8254  r1pwcl  8256  rankr1id  8271  tcrank  8293  dfac12lem2  8515  r1limwun  9105  r1wunlim  9106  inatsk  9147
  Copyright terms: Public domain W3C validator