MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.43 Unicode version

Theorem r19.43 2657
Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.43  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )

Proof of Theorem r19.43
StepHypRef Expression
1 r19.35 2649 . 2  |-  ( E. x  e.  A  ( -.  ph  ->  ps )  <->  ( A. x  e.  A  -.  ph  ->  E. x  e.  A  ps )
)
2 df-or 361 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
32rexbii 2532 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  E. x  e.  A  ( -.  ph  ->  ps )
)
4 df-or 361 . . 3  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  A  ps )  <->  ( -.  E. x  e.  A  ph  ->  E. x  e.  A  ps ) )
5 ralnex 2517 . . . 4  |-  ( A. x  e.  A  -.  ph  <->  -. 
E. x  e.  A  ph )
65imbi1i 317 . . 3  |-  ( ( A. x  e.  A  -.  ph  ->  E. x  e.  A  ps )  <->  ( -.  E. x  e.  A  ph  ->  E. x  e.  A  ps )
)
74, 6bitr4i 245 . 2  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  A  ps )  <->  ( A. x  e.  A  -.  ph 
->  E. x  e.  A  ps ) )
81, 3, 73bitr4i 270 1  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359   A.wral 2509   E.wrex 2510
This theorem is referenced by:  r19.44av  2658  r19.45av  2659  r19.45zv  3457  iunun  3880  wemapso2lem  7149  pythagtriplem2  12744  pythagtrip  12761  dcubic  19974  erdszelem11  22903  soseq  23422  axcontlem4  23769  seglelin  23913  diophun  26019  rexzrexnn0  26051
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-ral 2513  df-rex 2514
  Copyright terms: Public domain W3C validator